The Product Formula for number fields #
In this file we prove the Product Formula for number fields: for any non-zero element x of a
number field K, we have ∏ |x|ᵥ=1 where the product runs over the equivalence classes of absolute
values of K. The |⬝|ᵥ are normalized as follows:
- for the infinite places,
|⬝|ᵥis the absolute value onKinduced by the corresponding field embedding inℂand the usual absolute value onℂ; - for the finite places and a non-zero
x,|x|ᵥis equal to the norm of the corresponding maximal ideal of𝓞 Kraised to the power of thev-adic valuation ofx.
Main Results #
NumberField.FinitePlace.prod_eq_inv_abs_norm: for any non-zero elementxof a number fieldK, the product∏ |x|ᵥof the absolute values ofxassociated to the finite places ofKis equal to the inverse of the norm ofx.NumberField.prod_abs_eq_one: for any non-zero elementxof a number fieldK, we have∏ |x|ᵥ=1, where the product runs over the equivalence classes of absolute values ofK.
Tags #
number field, embeddings, places, infinite places, finite places, product formula
theorem
NumberField.FinitePlace.prod_eq_inv_abs_norm_int
{K : Type u_1}
[Field K]
[NumberField K]
{x : RingOfIntegers K}
(h_x_nezero : x ≠ 0)
:
For any non-zero x in 𝓞 K, the prduct of w x, where w runs over FinitePlace K, is
equal to the inverse of the absolute value of Algebra.norm ℤ x.
theorem
NumberField.FinitePlace.prod_eq_inv_abs_norm
{K : Type u_1}
[Field K]
[NumberField K]
{x : K}
(h_x_nezero : x ≠ 0)
:
For any non-zero x in K, the prduct of w x, where w runs over FinitePlace K, is
equal to the inverse of the absolute value of Algebra.norm ℚ x.
theorem
NumberField.prod_abs_eq_one
{K : Type u_1}
[Field K]
[NumberField K]
{x : K}
(h_x_nezero : x ≠ 0)
:
The Product Formula for the Number Field K.