Documentation

Mathlib.NumberTheory.ModularForms.SlashActions

Slash actions #

This file defines a class of slash actions, which are families of right actions of a given group parametrized by some Type. This is modeled on the slash action of GLPos (Fin 2) ℝ on the space of modular forms.

Notation #

In the ModularForm locale, this provides

class SlashAction (β : Type u_1) (G : Type u_2) (α : Type u_3) (γ : Type u_4) [Group G] [AddMonoid α] [SMul γ α] :
Type (max (max u_1 u_2) u_3)

A general version of the slash action of the space of modular forms.

Instances
    @[simp]
    theorem SlashAction.zero_slash {β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} [Group G] [AddMonoid α] [SMul γ α] [self : SlashAction β G α γ] (k : β) (g : G) :
    SlashAction.map γ k g 0 = 0
    @[simp]
    theorem SlashAction.slash_one {β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} [Group G] [AddMonoid α] [SMul γ α] [self : SlashAction β G α γ] (k : β) (a : α) :
    SlashAction.map γ k 1 a = a
    theorem SlashAction.slash_mul {β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} [Group G] [AddMonoid α] [SMul γ α] [self : SlashAction β G α γ] (k : β) (g : G) (h : G) (a : α) :
    SlashAction.map γ k (g * h) a = SlashAction.map γ k h (SlashAction.map γ k g a)
    @[simp]
    theorem SlashAction.smul_slash {β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} [Group G] [AddMonoid α] [SMul γ α] [self : SlashAction β G α γ] (k : β) (g : G) (a : α) (z : γ) :
    SlashAction.map γ k g (z a) = z SlashAction.map γ k g a
    @[simp]
    theorem SlashAction.add_slash {β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} [Group G] [AddMonoid α] [SMul γ α] [self : SlashAction β G α γ] (k : β) (g : G) (a : α) (b : α) :
    SlashAction.map γ k g (a + b) = SlashAction.map γ k g a + SlashAction.map γ k g b
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem SlashAction.neg_slash {β : Type u_1} {G : Type u_2} {α : Type u_3} {γ : Type u_4} [Group G] [AddGroup α] [SMul γ α] [SlashAction β G α γ] (k : β) (g : G) (a : α) :
        SlashAction.map γ k g (-a) = -SlashAction.map γ k g a
        @[simp]
        theorem SlashAction.smul_slash_of_tower {R : Type u_1} {β : Type u_2} {G : Type u_3} {α : Type u_4} (γ : Type u_5) [Group G] [AddGroup α] [Monoid γ] [MulAction γ α] [SMul R γ] [SMul R α] [IsScalarTower R γ α] [SlashAction β G α γ] (k : β) (g : G) (a : α) (r : R) :
        SlashAction.map γ k g (r a) = r SlashAction.map γ k g a
        def monoidHomSlashAction {β : Type u_1} {G : Type u_2} {H : Type u_3} {α : Type u_4} {γ : Type u_5} [Group G] [AddMonoid α] [SMul γ α] [Group H] [SlashAction β G α γ] (h : H →* G) :
        SlashAction β H α γ

        Slash_action induced by a monoid homomorphism.

        Equations
        Instances For
          def ModularForm.slash (k : ) (γ : { x : GL (Fin 2) // x Matrix.GLPos (Fin 2) }) (f : UpperHalfPlane) (x : UpperHalfPlane) :

          The weight k action of GL(2, ℝ)⁺ on functions f : ℍ → ℂ.

          Equations
          Instances For
            theorem ModularForm.slash_def {k : } (f : UpperHalfPlane) (A : { x : GL (Fin 2) // x Matrix.GLPos (Fin 2) }) :
            @[simp]

            The constant function 1 is invariant under any element of SL(2, ℤ).

            theorem ModularForm.slash_action_eq'_iff (k : ) (Γ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) )) (f : UpperHalfPlane) (γ : { x : Matrix.SpecialLinearGroup (Fin 2) // x Γ }) (z : UpperHalfPlane) :
            SlashAction.map k γ f z = f z f (γ z) = ((γ 1 0) * z + (γ 1 1)) ^ k * f z

            A function f : ℍ → ℂ is slash-invariant, of weight k ∈ ℤ and level Γ, if for every matrix γ ∈ Γ we have f(γ • z)= (c*z+d)^k f(z) where γ= ![![a, b], ![c, d]], and it acts on via Möbius transformations.

            theorem ModularForm.mul_slash (k1 : ) (k2 : ) (A : { x : GL (Fin 2) // x Matrix.GLPos (Fin 2) }) (f : UpperHalfPlane) (g : UpperHalfPlane) :
            SlashAction.map (k1 + k2) A (f * g) = (↑A).det SlashAction.map k1 A f * SlashAction.map k2 A g