Jacobi's theta function #
This file defines the one-variable Jacobi theta function
$$\theta(\tau) = \sum_{n \in \mathbb{Z}} \exp (i \pi n ^ 2 \tau),$$
and proves the modular transformation properties θ (τ + 2) = θ τ and
θ (-1 / τ) = (-I * τ) ^ (1 / 2) * θ τ, using Poisson's summation formula for the latter. We also
show that θ is differentiable on ℍ, and θ(τ) - 1 has exponential decay as im τ → ∞.
theorem
isBigO_at_im_infty_jacobiTheta_sub_one :
(fun (τ : ℂ) => jacobiTheta τ - 1) =O[Filter.comap Complex.im Filter.atTop] fun (τ : ℂ) => Real.exp (-Real.pi * τ.im)
The norm of jacobiTheta τ - 1 decays exponentially as im τ → ∞.