Fermat's Last Theorem for the case n = 4 #
There are no non-zero integers a, b and c such that a ^ 4 + b ^ 4 = c ^ 4.
a minimal solution to a ^ 4 + b ^ 4 = c ^ 2 must have a and b coprime.
We can swap a and b in a minimal solution to a ^ 4 + b ^ 4 = c ^ 2.
@[deprecated Int.isCoprime_of_sq_sum (since := "2025-01-23")]
Alias of Int.isCoprime_of_sq_sum.
@[deprecated Int.isCoprime_of_sq_sum' (since := "2025-01-23")]
Alias of Int.isCoprime_of_sq_sum'.
Fermat's Last Theorem for $n=4$: if a b c : ℕ are all non-zero
then a ^ 4 + b ^ 4 ≠ c ^ 4.
theorem
FermatLastTheorem.of_odd_primes
(hprimes : ∀ (p : ℕ), Nat.Prime p → Odd p → FermatLastTheoremFor p)
:
To prove Fermat's Last Theorem, it suffices to prove it for odd prime exponents.