Cyclotomic fields whose ring of integers is a PID. #
We prove that ℤ [ζₚ] is a PID for specific values of p. The result holds for p ≤ 19,
but the proof is more and more involved.
Main results #
three_pid: IfIsCyclotomicExtension {3} ℚ Kthen𝓞 Kis a principal ideal domain.five_pid: IfIsCyclotomicExtension {5} ℚ Kthen𝓞 Kis a principal ideal domain.
theorem
IsCyclotomicExtension.Rat.three_pid
(K : Type u)
[Field K]
[NumberField K]
[IsCyclotomicExtension {3} ℚ K]
:
If IsCyclotomicExtension {3} ℚ K then 𝓞 K is a principal ideal domain.
theorem
IsCyclotomicExtension.Rat.five_pid
(K : Type u)
[Field K]
[NumberField K]
[IsCyclotomicExtension {5} ℚ K]
:
If IsCyclotomicExtension {5} ℚ K then 𝓞 K is a principal ideal domain.