Finitely strongly measurable functions in Lp
#
Functions in Lp
for 0 < p < ∞
are finitely strongly measurable.
Main statements #
Memℒp.aefinStronglyMeasurable
: ifMemℒp f p μ
with0 < p < ∞
, thenAEFinStronglyMeasurable f μ
.Lp.finStronglyMeasurable
: for0 < p < ∞
,Lp
functions are finitely strongly measurable.
References #
- Hytönen, Tuomas, Jan Van Neerven, Mark Veraar, and Lutz Weis. Analysis in Banach spaces. Springer, 2016.
theorem
MeasureTheory.Memℒp.finStronglyMeasurable_of_stronglyMeasurable
{α : Type u_1}
{G : Type u_2}
{p : ENNReal}
{m0 : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
[NormedAddCommGroup G]
{f : α → G}
(hf : MeasureTheory.Memℒp f p μ)
(hf_meas : MeasureTheory.StronglyMeasurable f)
(hp_ne_zero : p ≠ 0)
(hp_ne_top : p ≠ ⊤)
:
theorem
MeasureTheory.Memℒp.aefinStronglyMeasurable
{α : Type u_1}
{G : Type u_2}
{p : ENNReal}
{m0 : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
[NormedAddCommGroup G]
{f : α → G}
(hf : MeasureTheory.Memℒp f p μ)
(hp_ne_zero : p ≠ 0)
(hp_ne_top : p ≠ ⊤)
:
theorem
MeasureTheory.Integrable.aefinStronglyMeasurable
{α : Type u_1}
{G : Type u_2}
{m0 : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
[NormedAddCommGroup G]
{f : α → G}
(hf : MeasureTheory.Integrable f μ)
:
theorem
MeasureTheory.Lp.finStronglyMeasurable
{α : Type u_1}
{G : Type u_2}
{p : ENNReal}
{m0 : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
[NormedAddCommGroup G]
(f : { x : α →ₘ[μ] G // x ∈ MeasureTheory.Lp G p μ })
(hp_ne_zero : p ≠ 0)
(hp_ne_top : p ≠ ⊤)
: