Quotienting out a free ℤ-module #
If G is a rank d free ℤ-module, then G/nG is a finite group of cardinality n ^ d.
@[reducible, inline]
ModN G n denotes the quotient of G by multiples of n
Equations
- ModN G n = (G ⧸ LinearMap.range ((LinearMap.lsmul ℤ G) ↑n))
Instances For
Equations
The universal property of ModN G n in terms of monoids: Monoid homomorphisms from ModN G n
are the same as monoid homormorphisms from G whose values are n-torsion.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
ModN.liftEquiv'
{G : Type u_1}
{H : Type u_2}
[AddCommGroup G]
{n : ℕ}
[AddCommGroup H]
[Module (ZMod n) H]
:
The universal property of ModN G n in terms of ZMod n-modules: ZMod n-linear maps from
ModN G n are the same as monoid homormorphisms from G whose values are n-torsion.
Equations
Instances For
The quotient map G → G / nG.
Equations
- ModN.mkQ n = ↑(LinearMap.range ((LinearMap.lsmul ℤ G) ↑n)).mkQ
Instances For
noncomputable def
ModN.basis
{G : Type u_1}
[AddCommGroup G]
{n : ℕ}
[NeZero n]
{ι : Type u_4}
(b : Basis ι ℤ G)
:
Given a free module G over ℤ, construct the corresponding basis
of G / ⟨n⟩ over ℤ / nℤ.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
ModN.instModuleFinite
{G : Type u_1}
[AddCommGroup G]
{n : ℕ}
[NeZero n]
[Module.Free ℤ G]
[Module.Finite ℤ G]
:
Module.Finite (ZMod n) (ModN G n)
instance
ModN.instFinite
{G : Type u_1}
[AddCommGroup G]
{n : ℕ}
[NeZero n]
[Module.Free ℤ G]
[Module.Finite ℤ G]
:
@[simp]
theorem
ModN.natCard_eq
(G : Type u_1)
[AddCommGroup G]
(n : ℕ)
[NeZero n]
[Module.Free ℤ G]
[Module.Finite ℤ G]
: