Documentation

Mathlib.LinearAlgebra.ExteriorAlgebra.Grading

Results about the grading structure of the exterior algebra #

Many of these results are copied with minimal modification from the tensor algebra.

The main result is ExteriorAlgebra.gradedAlgebra, which says that the exterior algebra is a ℕ-graded algebra.

def ExteriorAlgebra.GradedAlgebra.ι (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] :
M →ₗ[R] DirectSum fun (i : ) => { x : ExteriorAlgebra R M // x ⋀[R]^i M }

A version of ExteriorAlgebra.ι that maps directly into the graded structure. This is primarily an auxiliary construction used to provide ExteriorAlgebra.gradedAlgebra.

Equations
Instances For
    theorem ExteriorAlgebra.GradedAlgebra.ι_apply (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] (m : M) :
    (ExteriorAlgebra.GradedAlgebra.ι R M) m = (DirectSum.of (fun (i : ) => { x : ExteriorAlgebra R M // x ⋀[R]^i M }) 1) (ExteriorAlgebra.ι R) m,
    Equations
    • =
    def ExteriorAlgebra.GradedAlgebra.liftι (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] :
    ExteriorAlgebra R M →ₐ[R] DirectSum fun (i : ) => { x : ExteriorAlgebra R M // x ⋀[R]^i M }

    ExteriorAlgebra.GradedAlgebra.ι lifted to exterior algebra. This is primarily an auxiliary construction used to provide ExteriorAlgebra.gradedAlgebra.

    Equations
    Instances For
      theorem ExteriorAlgebra.GradedAlgebra.liftι_eq (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] (i : ) (x : { x : ExteriorAlgebra R M // x ⋀[R]^i M }) :
      (ExteriorAlgebra.GradedAlgebra.liftι R M) x = (DirectSum.of (fun (i : ) => { x : ExteriorAlgebra R M // x ⋀[R]^i M }) i) x
      instance ExteriorAlgebra.gradedAlgebra (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] :
      GradedAlgebra fun (i : ) => ⋀[R]^i M

      The exterior algebra is graded by the powers of the submodule (ExteriorAlgebra.ι R).range.

      Equations
      theorem ExteriorAlgebra.ιMulti_span (R : Type u_1) (M : Type u_2) [CommRing R] [AddCommGroup M] [Module R M] :
      Submodule.span R (Set.range fun (x : (n : ) × (Fin nM)) => (ExteriorAlgebra.ιMulti R x.fst) x.snd) =

      The union of the images of the maps ExteriorAlgebra.ιMulti R n for n running through all natural numbers spans the exterior algebra.