Results about the grading structure of the exterior algebra #
Many of these results are copied with minimal modification from the tensor algebra.
The main result is ExteriorAlgebra.gradedAlgebra
, which says that the exterior algebra is a
ℕ-graded algebra.
def
ExteriorAlgebra.GradedAlgebra.ι
(R : Type u_1)
(M : Type u_2)
[CommRing R]
[AddCommGroup M]
[Module R M]
:
A version of ExteriorAlgebra.ι
that maps directly into the graded structure. This is
primarily an auxiliary construction used to provide ExteriorAlgebra.gradedAlgebra
.
Equations
- ExteriorAlgebra.GradedAlgebra.ι R M = DirectSum.lof R ℕ (fun (i : ℕ) => { x : ExteriorAlgebra R M // x ∈ ⋀[R]^i M }) 1 ∘ₗ LinearMap.codRestrict (⋀[R]^1 M) (ExteriorAlgebra.ι R) ⋯
Instances For
theorem
ExteriorAlgebra.GradedAlgebra.ι_apply
(R : Type u_1)
(M : Type u_2)
[CommRing R]
[AddCommGroup M]
[Module R M]
(m : M)
:
(ExteriorAlgebra.GradedAlgebra.ι R M) m = (DirectSum.of (fun (i : ℕ) => { x : ExteriorAlgebra R M // x ∈ ⋀[R]^i M }) 1) ⟨(ExteriorAlgebra.ι R) m, ⋯⟩
instance
ExteriorAlgebra.instGradedMonoidNatSubmoduleExteriorPower
(R : Type u_1)
(M : Type u_2)
[CommRing R]
[AddCommGroup M]
[Module R M]
:
SetLike.GradedMonoid fun (i : ℕ) => ⋀[R]^i M
Equations
- ⋯ = ⋯
theorem
ExteriorAlgebra.GradedAlgebra.ι_sq_zero
(R : Type u_1)
(M : Type u_2)
[CommRing R]
[AddCommGroup M]
[Module R M]
(m : M)
:
(ExteriorAlgebra.GradedAlgebra.ι R M) m * (ExteriorAlgebra.GradedAlgebra.ι R M) m = 0
def
ExteriorAlgebra.GradedAlgebra.liftι
(R : Type u_1)
(M : Type u_2)
[CommRing R]
[AddCommGroup M]
[Module R M]
:
ExteriorAlgebra R M →ₐ[R] DirectSum ℕ fun (i : ℕ) => { x : ExteriorAlgebra R M // x ∈ ⋀[R]^i M }
ExteriorAlgebra.GradedAlgebra.ι
lifted to exterior algebra. This is
primarily an auxiliary construction used to provide ExteriorAlgebra.gradedAlgebra
.
Equations
Instances For
theorem
ExteriorAlgebra.GradedAlgebra.liftι_eq
(R : Type u_1)
(M : Type u_2)
[CommRing R]
[AddCommGroup M]
[Module R M]
(i : ℕ)
(x : { x : ExteriorAlgebra R M // x ∈ ⋀[R]^i M })
:
(ExteriorAlgebra.GradedAlgebra.liftι R M) ↑x = (DirectSum.of (fun (i : ℕ) => { x : ExteriorAlgebra R M // x ∈ ⋀[R]^i M }) i) x
instance
ExteriorAlgebra.gradedAlgebra
(R : Type u_1)
(M : Type u_2)
[CommRing R]
[AddCommGroup M]
[Module R M]
:
GradedAlgebra fun (i : ℕ) => ⋀[R]^i M
The exterior algebra is graded by the powers of the submodule (ExteriorAlgebra.ι R).range
.
Equations
- ExteriorAlgebra.gradedAlgebra R M = GradedAlgebra.ofAlgHom (fun (i : ℕ) => ⋀[R]^i M) (ExteriorAlgebra.GradedAlgebra.liftι R M) ⋯ ⋯
theorem
ExteriorAlgebra.ιMulti_span
(R : Type u_1)
(M : Type u_2)
[CommRing R]
[AddCommGroup M]
[Module R M]
:
Submodule.span R (Set.range fun (x : (n : ℕ) × (Fin n → M)) => (ExteriorAlgebra.ιMulti R x.fst) x.snd) = ⊤
The union of the images of the maps ExteriorAlgebra.ιMulti R n
for n
running through
all natural numbers spans the exterior algebra.