Documentation

Mathlib.LinearAlgebra.CliffordAlgebra.Grading

Results about the grading structure of the clifford algebra #

The main result is CliffordAlgebra.gradedAlgebra, which says that the clifford algebra is a ℤ₂-graded algebra (or "superalgebra").

def CliffordAlgebra.evenOdd {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (i : ZMod 2) :

The even or odd submodule, defined as the supremum of the even or odd powers of (ι Q).range. evenOdd 0 is the even submodule, and evenOdd 1 is the odd submodule.

Equations
Instances For
    theorem CliffordAlgebra.ι_mul_ι_mem_evenOdd_zero {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m₁ : M) (m₂ : M) :
    def CliffordAlgebra.GradedAlgebra.ι {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) :
    M →ₗ[R] DirectSum (ZMod 2) fun (i : ZMod 2) => { x : CliffordAlgebra Q // x CliffordAlgebra.evenOdd Q i }

    A version of CliffordAlgebra.ι that maps directly into the graded structure. This is primarily an auxiliary construction used to provide CliffordAlgebra.gradedAlgebra.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem CliffordAlgebra.GradedAlgebra.ι_apply {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (m : M) :
      theorem CliffordAlgebra.GradedAlgebra.lift_ι_eq {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (i' : ZMod 2) (x' : { x : CliffordAlgebra Q // x CliffordAlgebra.evenOdd Q i' }) :
      ((CliffordAlgebra.lift Q) CliffordAlgebra.GradedAlgebra.ι Q, ) x' = (DirectSum.of (fun (i : ZMod 2) => { x : CliffordAlgebra Q // x CliffordAlgebra.evenOdd Q i }) i') x'

      The clifford algebra is graded by the even and odd parts.

      Equations
      theorem CliffordAlgebra.evenOdd_induction {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) (n : ZMod 2) {motive : (x : CliffordAlgebra Q) → x CliffordAlgebra.evenOdd Q nProp} (range_ι_pow : ∀ (v : CliffordAlgebra Q) (h : v LinearMap.range (CliffordAlgebra.ι Q) ^ n.val), motive v ) (add : ∀ (x y : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q n) (hy : y CliffordAlgebra.evenOdd Q n), motive x hxmotive y hymotive (x + y) ) (ι_mul_ι_mul : ∀ (m₁ m₂ : M) (x : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q n), motive x hxmotive ((CliffordAlgebra.ι Q) m₁ * (CliffordAlgebra.ι Q) m₂ * x) ) (x : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q n) :
      motive x hx

      To show a property is true on the even or odd part, it suffices to show it is true on the scalars or vectors (respectively), closed under addition, and under left-multiplication by a pair of vectors.

      theorem CliffordAlgebra.even_induction {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) {motive : (x : CliffordAlgebra Q) → x CliffordAlgebra.evenOdd Q 0Prop} (algebraMap : ∀ (r : R), motive ((_root_.algebraMap R (CliffordAlgebra Q)) r) ) (add : ∀ (x y : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q 0) (hy : y CliffordAlgebra.evenOdd Q 0), motive x hxmotive y hymotive (x + y) ) (ι_mul_ι_mul : ∀ (m₁ m₂ : M) (x : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q 0), motive x hxmotive ((CliffordAlgebra.ι Q) m₁ * (CliffordAlgebra.ι Q) m₂ * x) ) (x : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q 0) :
      motive x hx

      To show a property is true on the even parts, it suffices to show it is true on the scalars, closed under addition, and under left-multiplication by a pair of vectors.

      theorem CliffordAlgebra.odd_induction {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (Q : QuadraticForm R M) {P : (x : CliffordAlgebra Q) → x CliffordAlgebra.evenOdd Q 1Prop} (ι : ∀ (v : M), P ((CliffordAlgebra.ι Q) v) ) (add : ∀ (x y : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q 1) (hy : y CliffordAlgebra.evenOdd Q 1), P x hxP y hyP (x + y) ) (ι_mul_ι_mul : ∀ (m₁ m₂ : M) (x : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q 1), P x hxP ((CliffordAlgebra.ι Q) m₁ * (CliffordAlgebra.ι Q) m₂ * x) ) (x : CliffordAlgebra Q) (hx : x CliffordAlgebra.evenOdd Q 1) :
      P x hx

      To show a property is true on the odd parts, it suffices to show it is true on the vectors, closed under addition, and under left-multiplication by a pair of vectors.