Note about Mathlib/Init/
#
The files in Mathlib/Init
are leftovers from the port from Mathlib3.
(They contain content moved from lean3 itself that Mathlib needed but was not moved to lean4.)
We intend to move all the content of these files out into the main Mathlib
directory structure.
Contributions assisting with this are appreciated.
Unbundled algebra classes #
These classes were part of an incomplete refactor described here on the github Wiki. However a subset of them are widely used in mathlib3, and it has been tricky to clean this up as this file was in core Lean 3.
@[deprecated]
theorem
IsLeftCancel.left_cancel
{α : Sort u}
{op : α → α → α}
[self : IsLeftCancel α op]
(a : α)
(b : α)
(c : α)
:
@[deprecated]
theorem
IsRightCancel.right_cancel
{α : Sort u}
{op : α → α → α}
[self : IsRightCancel α op]
(a : α)
(b : α)
(c : α)
:
@[instance 100]
instance
isTotalPreorder_isPreorder
(α : Sort u)
(r : α → α → Prop)
[s : IsTotalPreorder α r]
:
IsPreorder α r
Every total pre-order is a pre-order.
Equations
- ⋯ = ⋯
@[deprecated]
IsIncompTrans X lt
means that for lt
a binary relation on X
, the incomparable relation
fun a b => ¬ lt a b ∧ ¬ lt b a
is transitive.
@[deprecated, instance 100]
instance
instIsIncompTransOfIsStrictWeakOrder
(α : Sort u)
(lt : α → α → Prop)
[IsStrictWeakOrder α lt]
:
IsIncompTrans α lt
Equations
- ⋯ = ⋯
@[deprecated]
theorem
StrictWeakOrder.esymm
{α : Sort u}
{r : α → α → Prop}
{a : α}
{b : α}
:
StrictWeakOrder.Equiv a b → StrictWeakOrder.Equiv b a
@[deprecated]
theorem
StrictWeakOrder.not_lt_of_equiv
{α : Sort u}
{r : α → α → Prop}
{a : α}
{b : α}
:
StrictWeakOrder.Equiv a b → ¬r a b
@[deprecated]
theorem
StrictWeakOrder.not_lt_of_equiv'
{α : Sort u}
{r : α → α → Prop}
{a : α}
{b : α}
:
StrictWeakOrder.Equiv a b → ¬r b a
@[deprecated]
@[deprecated]
theorem
StrictWeakOrder.etrans
{α : Sort u}
{r : α → α → Prop}
[IsStrictWeakOrder α r]
{a : α}
{b : α}
{c : α}
:
StrictWeakOrder.Equiv a b → StrictWeakOrder.Equiv b c → StrictWeakOrder.Equiv a c
@[deprecated]
instance
StrictWeakOrder.isEquiv
{α : Sort u}
{r : α → α → Prop}
[IsStrictWeakOrder α r]
:
IsEquiv α StrictWeakOrder.Equiv
Equations
- ⋯ = ⋯
The equivalence relation induced by lt
Equations
- One or more equations did not get rendered due to their size.
@[deprecated]
theorem
isStrictWeakOrder_of_isTotalPreorder
{α : Sort u}
{le : α → α → Prop}
{lt : α → α → Prop}
[DecidableRel le]
[IsTotalPreorder α le]
(h : ∀ (a b : α), lt a b ↔ ¬le b a)
:
IsStrictWeakOrder α lt
@[deprecated]
instance
instIsTotalPreorderLe
{α : Type u_1}
[LinearOrder α]
:
IsTotalPreorder α fun (x1 x2 : α) => x1 ≤ x2
Equations
- ⋯ = ⋯
@[deprecated]
instance
isStrictWeakOrder_of_linearOrder
{α : Type u_1}
[LinearOrder α]
:
IsStrictWeakOrder α fun (x1 x2 : α) => x1 < x2
Equations
- ⋯ = ⋯
@[deprecated]
theorem
lt_of_lt_of_incomp
{α : Sort u}
{lt : α → α → Prop}
[IsStrictWeakOrder α lt]
[DecidableRel lt]
{a : α}
{b : α}
{c : α}
:
@[deprecated]
theorem
lt_of_incomp_of_lt
{α : Sort u}
{lt : α → α → Prop}
[IsStrictWeakOrder α lt]
[DecidableRel lt]
{a : α}
{b : α}
{c : α}
:
@[deprecated]
@[deprecated]
theorem
eq_of_eqv_lt
{α : Sort u}
{lt : α → α → Prop}
[IsTrichotomous α lt]
{a : α}
{b : α}
:
StrictWeakOrder.Equiv a b → a = b
@[deprecated]
theorem
eqv_lt_iff_eq
{α : Sort u}
{lt : α → α → Prop}
[IsTrichotomous α lt]
[IsIrrefl α lt]
(a : α)
(b : α)
:
StrictWeakOrder.Equiv a b ↔ a = b