Lemmas about subgroups within the permutations (self-equivalences) of a type α
#
This file provides extra lemmas about some Subgroup
s that exist within Equiv.Perm α
.
GroupTheory.Subgroup
depends on GroupTheory.Perm.Basic
, so these need to be in a separate
file.
It also provides decidable instances on membership in these subgroups, since
MonoidHom.decidableMemRange
cannot be inferred without the help of a lambda.
The presence of these instances induces a Fintype
instance on the QuotientGroup.Quotient
of
these subgroups.
instance
Equiv.Perm.sumCongrHom.decidableMemRange
{α : Type u_1}
{β : Type u_2}
[DecidableEq α]
[DecidableEq β]
[Fintype α]
[Fintype β]
:
DecidablePred fun (x : Equiv.Perm (α ⊕ β)) => x ∈ (Equiv.Perm.sumCongrHom α β).range
Equations
- Equiv.Perm.sumCongrHom.decidableMemRange x = inferInstance
@[simp]
theorem
Equiv.Perm.sumCongrHom.card_range
{α : Type u_1}
{β : Type u_2}
[Fintype { x : Equiv.Perm (α ⊕ β) // x ∈ (Equiv.Perm.sumCongrHom α β).range }]
[Fintype (Equiv.Perm α × Equiv.Perm β)]
:
Fintype.card { x : Equiv.Perm (α ⊕ β) // x ∈ (Equiv.Perm.sumCongrHom α β).range } = Fintype.card (Equiv.Perm α × Equiv.Perm β)
instance
Equiv.Perm.sigmaCongrRightHom.decidableMemRange
{α : Type u_1}
{β : α → Type u_2}
[DecidableEq α]
[(a : α) → DecidableEq (β a)]
[Fintype α]
[(a : α) → Fintype (β a)]
:
DecidablePred fun (x : Equiv.Perm ((a : α) × β a)) => x ∈ (Equiv.Perm.sigmaCongrRightHom β).range
Equations
- Equiv.Perm.sigmaCongrRightHom.decidableMemRange x = inferInstance
@[simp]
theorem
Equiv.Perm.sigmaCongrRightHom.card_range
{α : Type u_1}
{β : α → Type u_2}
[Fintype { x : Equiv.Perm ((a : α) × β a) // x ∈ (Equiv.Perm.sigmaCongrRightHom β).range }]
[Fintype ((a : α) → Equiv.Perm (β a))]
:
Fintype.card { x : Equiv.Perm ((a : α) × β a) // x ∈ (Equiv.Perm.sigmaCongrRightHom β).range } = Fintype.card ((a : α) → Equiv.Perm (β a))
instance
Equiv.Perm.subtypeCongrHom.decidableMemRange
{α : Type u_1}
(p : α → Prop)
[DecidablePred p]
[Fintype (Equiv.Perm { a : α // p a } × Equiv.Perm { a : α // ¬p a })]
[DecidableEq (Equiv.Perm α)]
:
DecidablePred fun (x : Equiv.Perm α) => x ∈ (Equiv.Perm.subtypeCongrHom p).range
Equations
- Equiv.Perm.subtypeCongrHom.decidableMemRange p x = inferInstance
@[simp]
theorem
Equiv.Perm.subtypeCongrHom.card_range
{α : Type u_1}
(p : α → Prop)
[DecidablePred p]
[Fintype { x : Equiv.Perm α // x ∈ (Equiv.Perm.subtypeCongrHom p).range }]
[Fintype (Equiv.Perm { a : α // p a } × Equiv.Perm { a : α // ¬p a })]
:
Fintype.card { x : Equiv.Perm α // x ∈ (Equiv.Perm.subtypeCongrHom p).range } = Fintype.card (Equiv.Perm { a : α // p a } × Equiv.Perm { a : α // ¬p a })
noncomputable def
Equiv.Perm.subgroupOfMulAction
(G : Type u_1)
(H : Type u_2)
[Group G]
[MulAction G H]
[FaithfulSMul G H]
:
G ≃* { x : Equiv.Perm H // x ∈ (MulAction.toPermHom G H).range }
Cayley's theorem: Every group G is isomorphic to a subgroup of the symmetric group acting on
G
. Note that we generalize this to an arbitrary "faithful" group action by G
. Setting H = G
recovers the usual statement of Cayley's theorem via RightCancelMonoid.faithfulSMul