Minimum order of an element #
This file defines the minimum order of an element of a monoid.
Main declarations #
Monoid.minOrder
: The minimum order of an element of a given monoid.Monoid.minOrder_eq_top
: The minimum order is infinite iff the monoid is torsion-free.ZMod.minOrder
: The minimum order of $$ℤ/nℤ$$ is the smallest factor ofn
, unlessn = 0, 1
.
The minimum order of a non-identity element. Also the minimum size of a nontrivial
subgroup, see AddMonoid.le_minOrder_iff_forall_addSubgroup
. Returns ∞
if the monoid is
torsion-free.
Equations
- AddMonoid.minOrder α = ⨅ (a : α), ⨅ (_ : a ≠ 0), ⨅ (_ : IsOfFinAddOrder a), ↑(addOrderOf a)
Instances For
The minimum order of a non-identity element. Also the minimum size of a nontrivial subgroup, see
Monoid.le_minOrder_iff_forall_subgroup
. Returns ∞
if the monoid is torsion-free.
Equations
- Monoid.minOrder α = ⨅ (a : α), ⨅ (_ : a ≠ 1), ⨅ (_ : IsOfFinOrder a), ↑(orderOf a)
Instances For
@[simp]
@[simp]
@[simp]
Alias of the reverse direction of Monoid.minOrder_eq_top
.
@[simp]
@[simp]
theorem
AddMonoid.le_minOrder
{α : Type u_1}
[AddMonoid α]
{n : ℕ∞}
:
n ≤ AddMonoid.minOrder α ↔ ∀ ⦃a : α⦄, a ≠ 0 → IsOfFinAddOrder a → n ≤ ↑(addOrderOf a)
@[simp]
theorem
Monoid.le_minOrder
{α : Type u_1}
[Monoid α]
{n : ℕ∞}
:
n ≤ Monoid.minOrder α ↔ ∀ ⦃a : α⦄, a ≠ 1 → IsOfFinOrder a → n ≤ ↑(orderOf a)
theorem
AddMonoid.minOrder_le_addOrderOf
{α : Type u_1}
[AddMonoid α]
{a : α}
(ha : a ≠ 0)
(ha' : IsOfFinAddOrder a)
:
AddMonoid.minOrder α ≤ ↑(addOrderOf a)
theorem
Monoid.minOrder_le_orderOf
{α : Type u_1}
[Monoid α]
{a : α}
(ha : a ≠ 1)
(ha' : IsOfFinOrder a)
:
Monoid.minOrder α ≤ ↑(orderOf a)
theorem
AddMonoid.le_minOrder_iff_forall_addSubgroup
{α : Type u_1}
[AddGroup α]
{n : ℕ∞}
:
n ≤ AddMonoid.minOrder α ↔ ∀ ⦃s : AddSubgroup α⦄, s ≠ ⊥ → (↑s).Finite → n ≤ ↑(Nat.card { x : α // x ∈ s })
theorem
AddMonoid.minOrder_le_natCard
{α : Type u_1}
[AddGroup α]
{s : AddSubgroup α}
(hs : s ≠ ⊥)
(hs' : (↑s).Finite)
:
AddMonoid.minOrder α ≤ ↑(Nat.card { x : α // x ∈ s })
@[simp]
@[simp]