Documentation

Mathlib.GroupTheory.Frattini

The Frattini subgroup #

We give the definition of the Frattini subgroup of a group, and three elementary results:

def frattini (G : Type u_1) [Group G] :

The Frattini subgroup of a group is the intersection of the maximal subgroups.

Equations
Instances For
    theorem frattini_le_coatom {G : Type u_1} [Group G] {K : Subgroup G} (h : IsCoatom K) :
    theorem frattini_le_comap_frattini_of_surjective {G : Type u_1} {H : Type u_2} [Group G] [Group H] {φ : G →* H} (hφ : Function.Surjective φ) :
    instance frattini_characteristic {G : Type u_1} [Group G] :
    (frattini G).Characteristic

    The Frattini subgroup is characteristic.

    Equations
    • =
    theorem frattini_nongenerating {G : Type u_1} [Group G] [IsCoatomic (Subgroup G)] {K : Subgroup G} (h : K frattini G = ) :
    K =

    The Frattini subgroup consists of "non-generating" elements in the following sense:

    If a subgroup together with the Frattini subgroup generates the whole group, then the subgroup is already the whole group.

    theorem frattini_nilpotent {G : Type u_1} [Group G] [Finite G] :
    Group.IsNilpotent { x : G // x frattini G }

    When G is finite, the Frattini subgroup is nilpotent.