Commutators of Subgroups #
If G is a group and H₁ H₂ : Subgroup G then the commutator ⁅H₁, H₂⁆ : Subgroup G
is the subgroup of G generated by the commutators h₁ * h₂ * h₁⁻¹ * h₂⁻¹.
Main definitions #
⁅g₁, g₂⁆: the commutator of the elementsg₁andg₂(defined bycommutatorElementelsewhere).⁅H₁, H₂⁆: the commutator of the subgroupsH₁andH₂.
instance
Subgroup.commutator_characteristic
{G : Type u_1}
[Group G]
(H₁ H₂ : Subgroup G)
[h₁ : H₁.Characteristic]
[h₂ : H₂.Characteristic]
:
⁅H₁, H₂⁆.Characteristic
theorem
Subgroup.commutator_pi_pi_le
{η : Type u_4}
{Gs : η → Type u_5}
[(i : η) → Group (Gs i)]
(H K : (i : η) → Subgroup (Gs i))
:
The commutator of direct product is contained in the direct product of the commutators.
See commutator_pi_pi_of_finite for equality given Fintype η.