Documentation

Mathlib.Geometry.Euclidean.MongePoint

Monge point and orthocenter #

This file defines the orthocenter of a triangle, via its n-dimensional generalization, the Monge point of a simplex.

Main definitions #

References #

The Monge point of a simplex (in 2 or more dimensions) is a generalization of the orthocenter of a triangle. It is defined to be the intersection of the Monge planes, where a Monge plane is the (n-1)-dimensional affine subspace of the subspace spanned by the simplex that passes through the centroid of an (n-2)-dimensional face and is orthogonal to the opposite edge (in 2 dimensions, this is the same as an altitude). The circumcenter O, centroid G and Monge point M are collinear in that order on the Euler line, with OG : GM = (n-1): 2. Here, we use that ratio to define the Monge point (so resulting in a point that equals the centroid in 0 or 1 dimensions), and then show in subsequent lemmas that the point so defined lies in the Monge planes and is their unique point of intersection.

Equations
Instances For
    theorem Affine.Simplex.mongePoint_eq_smul_vsub_vadd_circumcenter {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P n) :
    s.mongePoint = ((n + 1) / (n - 1)) (Finset.centroid Finset.univ s.points -ᵥ s.circumcenter) +ᵥ s.circumcenter

    The position of the Monge point in relation to the circumcenter and centroid.

    The Monge point lies in the affine span.

    theorem Affine.Simplex.mongePoint_eq_of_range_eq {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } {s₁ : Affine.Simplex P n} {s₂ : Affine.Simplex P n} (h : Set.range s₁.points = Set.range s₂.points) :
    s₁.mongePoint = s₂.mongePoint

    Two simplices with the same points have the same Monge point.

    The weights for the Monge point of an (n+2)-simplex, in terms of pointsWithCircumcenter.

    Equations
    Instances For

      The Monge point of an (n+2)-simplex, in terms of pointsWithCircumcenter.

      The weights for the Monge point of an (n+2)-simplex, minus the centroid of an n-dimensional face, in terms of pointsWithCircumcenter. This definition is only valid when i₁ ≠ i₂.

      Equations
      Instances For
        theorem Affine.Simplex.mongePoint_vsub_face_centroid_eq_weightedVSub_of_pointsWithCircumcenter {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 2)) {i₁ : Fin (n + 3)} {i₂ : Fin (n + 3)} (h : i₁ i₂) :
        s.mongePoint -ᵥ Finset.centroid {i₁, i₂} s.points = (Finset.univ.weightedVSub s.pointsWithCircumcenter) (Affine.Simplex.mongePointVSubFaceCentroidWeightsWithCircumcenter i₁ i₂)

        The Monge point of an (n+2)-simplex, minus the centroid of an n-dimensional face, in terms of pointsWithCircumcenter.

        theorem Affine.Simplex.inner_mongePoint_vsub_face_centroid_vsub {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 2)) {i₁ : Fin (n + 3)} {i₂ : Fin (n + 3)} :
        inner (s.mongePoint -ᵥ Finset.centroid {i₁, i₂} s.points) (s.points i₁ -ᵥ s.points i₂) = 0

        The Monge point of an (n+2)-simplex, minus the centroid of an n-dimensional face, is orthogonal to the difference of the two vertices not in that face.

        def Affine.Simplex.mongePlane {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 2)) (i₁ : Fin (n + 3)) (i₂ : Fin (n + 3)) :

        A Monge plane of an (n+2)-simplex is the (n+1)-dimensional affine subspace of the subspace spanned by the simplex that passes through the centroid of an n-dimensional face and is orthogonal to the opposite edge (in 2 dimensions, this is the same as an altitude). This definition is only intended to be used when i₁ ≠ i₂.

        Equations
        Instances For
          theorem Affine.Simplex.mongePlane_def {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 2)) (i₁ : Fin (n + 3)) (i₂ : Fin (n + 3)) :
          s.mongePlane i₁ i₂ = AffineSubspace.mk' (Finset.centroid {i₁, i₂} s.points) (Submodule.span {s.points i₁ -ᵥ s.points i₂}) affineSpan (Set.range s.points)

          The definition of a Monge plane.

          theorem Affine.Simplex.mongePlane_comm {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 2)) (i₁ : Fin (n + 3)) (i₂ : Fin (n + 3)) :
          s.mongePlane i₁ i₂ = s.mongePlane i₂ i₁

          The Monge plane associated with vertices i₁ and i₂ equals that associated with i₂ and i₁.

          theorem Affine.Simplex.mongePoint_mem_mongePlane {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 2)) {i₁ : Fin (n + 3)} {i₂ : Fin (n + 3)} :
          s.mongePoint s.mongePlane i₁ i₂

          The Monge point lies in the Monge planes.

          theorem Affine.Simplex.direction_mongePlane {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 2)) {i₁ : Fin (n + 3)} {i₂ : Fin (n + 3)} :
          (s.mongePlane i₁ i₂).direction = (Submodule.span {s.points i₁ -ᵥ s.points i₂}) vectorSpan (Set.range s.points)

          The direction of a Monge plane.

          theorem Affine.Simplex.eq_mongePoint_of_forall_mem_mongePlane {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } {s : Affine.Simplex P (n + 2)} {i₁ : Fin (n + 3)} {p : P} (h : ∀ (i₂ : Fin (n + 3)), i₁ i₂p s.mongePlane i₁ i₂) :
          p = s.mongePoint

          The Monge point is the only point in all the Monge planes from any one vertex.

          def Affine.Simplex.altitude {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 1)) (i : Fin (n + 2)) :

          An altitude of a simplex is the line that passes through a vertex and is orthogonal to the opposite face.

          Equations
          Instances For
            theorem Affine.Simplex.altitude_def {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 1)) (i : Fin (n + 2)) :
            s.altitude i = AffineSubspace.mk' (s.points i) (affineSpan (s.points '' (Finset.univ.erase i))).direction affineSpan (Set.range s.points)

            The definition of an altitude.

            theorem Affine.Simplex.mem_altitude {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 1)) (i : Fin (n + 2)) :
            s.points i s.altitude i

            A vertex lies in the corresponding altitude.

            theorem Affine.Simplex.direction_altitude {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 1)) (i : Fin (n + 2)) :
            (s.altitude i).direction = (vectorSpan (s.points '' (Finset.univ.erase i))) vectorSpan (Set.range s.points)

            The direction of an altitude.

            theorem Affine.Simplex.vectorSpan_isOrtho_altitude_direction {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 1)) (i : Fin (n + 2)) :
            vectorSpan (s.points '' (Finset.univ.erase i)) (s.altitude i).direction

            The vector span of the opposite face lies in the direction orthogonal to an altitude.

            instance Affine.Simplex.finiteDimensional_direction_altitude {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 1)) (i : Fin (n + 2)) :
            FiniteDimensional { x : V // x (s.altitude i).direction }

            An altitude is finite-dimensional.

            Equations
            • =
            @[simp]
            theorem Affine.Simplex.finrank_direction_altitude {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 1)) (i : Fin (n + 2)) :
            FiniteDimensional.finrank { x : V // x (s.altitude i).direction } = 1

            An altitude is one-dimensional (i.e., a line).

            theorem Affine.Simplex.affineSpan_pair_eq_altitude_iff {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {n : } (s : Affine.Simplex P (n + 1)) (i : Fin (n + 2)) (p : P) :
            affineSpan {p, s.points i} = s.altitude i p s.points i p affineSpan (Set.range s.points) p -ᵥ s.points i (affineSpan (s.points '' (Finset.univ.erase i))).direction

            A line through a vertex is the altitude through that vertex if and only if it is orthogonal to the opposite face.

            The orthocenter of a triangle is the intersection of its altitudes. It is defined here as the 2-dimensional case of the Monge point.

            Equations
            Instances For

              The orthocenter equals the Monge point.

              The position of the orthocenter in relation to the circumcenter and centroid.

              The orthocenter lies in the affine span.

              theorem Affine.Triangle.orthocenter_eq_of_range_eq {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {t₁ : Affine.Triangle P} {t₂ : Affine.Triangle P} (h : Set.range t₁.points = Set.range t₂.points) :
              t₁.orthocenter = t₂.orthocenter

              Two triangles with the same points have the same orthocenter.

              theorem Affine.Triangle.altitude_eq_mongePlane {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] (t : Affine.Triangle P) {i₁ : Fin 3} {i₂ : Fin 3} {i₃ : Fin 3} (h₁₂ : i₁ i₂) (h₁₃ : i₁ i₃) (h₂₃ : i₂ i₃) :

              In the case of a triangle, altitudes are the same thing as Monge planes.

              The orthocenter lies in the altitudes.

              theorem Affine.Triangle.eq_orthocenter_of_forall_mem_altitude {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {t : Affine.Triangle P} {i₁ : Fin 3} {i₂ : Fin 3} {p : P} (h₁₂ : i₁ i₂) (h₁ : p Affine.Simplex.altitude t i₁) (h₂ : p Affine.Simplex.altitude t i₂) :
              p = t.orthocenter

              The orthocenter is the only point lying in any two of the altitudes.

              The distance from the orthocenter to the reflection of the circumcenter in a side equals the circumradius.

              The distance from the orthocenter to the reflection of the circumcenter in a side equals the circumradius, variant using a Finset.

              The affine span of the orthocenter and a vertex is contained in the altitude.

              theorem Affine.Triangle.altitude_replace_orthocenter_eq_affineSpan {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {t₁ : Affine.Triangle P} {t₂ : Affine.Triangle P} {i₁ : Fin 3} {i₂ : Fin 3} {i₃ : Fin 3} {j₁ : Fin 3} {j₂ : Fin 3} {j₃ : Fin 3} (hi₁₂ : i₁ i₂) (hi₁₃ : i₁ i₃) (hi₂₃ : i₂ i₃) (hj₁₂ : j₁ j₂) (hj₁₃ : j₁ j₃) (hj₂₃ : j₂ j₃) (h₁ : t₂.points j₁ = t₁.orthocenter) (h₂ : t₂.points j₂ = t₁.points i₂) (h₃ : t₂.points j₃ = t₁.points i₃) :
              Affine.Simplex.altitude t₂ j₂ = affineSpan {t₁.points i₁, t₁.points i₂}

              Suppose we are given a triangle t₁, and replace one of its vertices by its orthocenter, yielding triangle t₂ (with vertices not necessarily listed in the same order). Then an altitude of t₂ from a vertex that was not replaced is the corresponding side of t₁.

              theorem Affine.Triangle.orthocenter_replace_orthocenter_eq_point {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {t₁ : Affine.Triangle P} {t₂ : Affine.Triangle P} {i₁ : Fin 3} {i₂ : Fin 3} {i₃ : Fin 3} {j₁ : Fin 3} {j₂ : Fin 3} {j₃ : Fin 3} (hi₁₂ : i₁ i₂) (hi₁₃ : i₁ i₃) (hi₂₃ : i₂ i₃) (hj₁₂ : j₁ j₂) (hj₁₃ : j₁ j₃) (hj₂₃ : j₂ j₃) (h₁ : t₂.points j₁ = t₁.orthocenter) (h₂ : t₂.points j₂ = t₁.points i₂) (h₃ : t₂.points j₃ = t₁.points i₃) :
              t₂.orthocenter = t₁.points i₁

              Suppose we are given a triangle t₁, and replace one of its vertices by its orthocenter, yielding triangle t₂ (with vertices not necessarily listed in the same order). Then the orthocenter of t₂ is the vertex of t₁ that was replaced.

              Four points form an orthocentric system if they consist of the vertices of a triangle and its orthocenter.

              Equations
              Instances For
                theorem EuclideanGeometry.exists_of_range_subset_orthocentricSystem {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {t : Affine.Triangle P} (ho : t.orthocenterSet.range t.points) {p : Fin 3P} (hps : Set.range p insert t.orthocenter (Set.range t.points)) (hpi : Function.Injective p) :
                (∃ (i₁ : Fin 3) (i₂ : Fin 3) (i₃ : Fin 3) (j₂ : Fin 3) (j₃ : Fin 3), i₁ i₂ i₁ i₃ i₂ i₃ (∀ (i : Fin 3), i = i₁ i = i₂ i = i₃) p i₁ = t.orthocenter j₂ j₃ t.points j₂ = p i₂ t.points j₃ = p i₃) Set.range p = Set.range t.points

                This is an auxiliary lemma giving information about the relation of two triangles in an orthocentric system; it abstracts some reasoning, with no geometric content, that is common to some other lemmas. Suppose the orthocentric system is generated by triangle t, and we are given three points p in the orthocentric system. Then either we can find indices i₁, i₂ and i₃ for p such that p i₁ is the orthocenter of t and p i₂ and p i₃ are points j₂ and j₃ of t, or p has the same points as t.

                theorem EuclideanGeometry.exists_dist_eq_circumradius_of_subset_insert_orthocenter {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {t : Affine.Triangle P} (ho : t.orthocenterSet.range t.points) {p : Fin 3P} (hps : Set.range p insert t.orthocenter (Set.range t.points)) (hpi : Function.Injective p) :
                caffineSpan (Set.range t.points), p₁Set.range p, dist p₁ c = Affine.Simplex.circumradius t

                For any three points in an orthocentric system generated by triangle t, there is a point in the subspace spanned by the triangle from which the distance of all those three points equals the circumradius.

                Any three points in an orthocentric system are affinely independent.

                Any three points in an orthocentric system span the same subspace as the whole orthocentric system.

                All triangles in an orthocentric system have the same circumradius.

                Given any triangle in an orthocentric system, the fourth point is its orthocenter.