The exponent of purely inseparable extensions #
This file defines the exponent of a purely inseparable extension (if one exists) and some related results.
Most results are stated using ringExpChar K rather than using [ExpChar K p] parameter because
it gives cleaner API. To use the results in a context with [ExpChar K p], consider using
ringExpChar.eq K p for substitution.
Main definitions #
IsPurelyInseparable.HasExponent: typeclass to assert a purely inseparable field extensionL / Khas an exponent, that is a smallest natural numberesuch thata ^ ringExpChar K ^ e ∈ Kfor alla ∈ L.IsPurelyInseparable.exponent: the exponent of a purely inseparable field extension.IsPurelyInseparable.elemExponent: the exponent of an element of a purely inseparable field extension, that is the smallest natural numberesuch thata ^ ringExpChar K ^ e ∈ K.IsPurelyInseparable.iterateFrobenius: the iterated Frobenius map (ring homomorphism)L →+* Kfor purely inseparable field extensionL / Kwith exponent; forn ≥ exponent K L, it acts likex ↦ x ^ p ^ nbut the codomain is the base fieldK.IsPurelyInseparable.iterateFrobeniusₛₗ: version ofiterateFrobeniusas a semilinear map over a subfieldFofK, wrt the iterated Frobenius homomorphism onF.
Tags #
purely inseparable
A predicate class on a ring extension saying that there is a natural number e
such that a ^ ringExpChar K ^ e ∈ K for all a ∈ L.
- has_exponent : ∃ (e : ℕ), ∀ (a : L), a ^ ringExpChar K ^ e ∈ (algebraMap K L).range
Instances
Version of hasExponent_iff using ExpChar.
The exponent of a purely inseparable extension is the smallest
natural number e such that a ^ ringExpChar K ^ e ∈ K for all a ∈ L.
Equations
Instances For
Version of exponent_def using ExpChar.
Version of exponent_min using ExpChar.
The exponent of an element a ∈ L of a purely inseparable field extension L / K
is the smallest natural number e such that a ^ ringExpChar K ^ e ∈ K.
Equations
Instances For
The element y of the base field K such that
a ^ ringExpChar K ^ elemExponent K a = algebraMap K L y.
See IsPurelyInseparable.algebraMap_elemReduct_eq.
Equations
Instances For
Version of minpoly_eq using ExpChar.
The degree of the minimal polynomial of an element a ∈ L equals
ringExpChar K ^ elemExponent K a.
Version of minpoly_natDegree_eq using ExpChar.
Version of algebraMap_elemReduct_eq using ExpChar.
Version of elemExponent_def using ExpChar.
Version of elemExponent_le_of_pow_mem using ExpChar.
Version of elemExponent_min using ExpChar.
An exponent of an element is less or equal than exponent of the extension.
Iterated Frobenius map (ring homomorphism) for purely inseparable field extension with exponent.
If n ≥ exponent K L, it acts like x ↦ x ^ p ^ n but the codomain is the base field K.
Equations
- IsPurelyInseparable.iterateFrobenius K L p hn = { toFun := IsPurelyInseparable.iterateFrobeniusAux✝ K L p n, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
Action of iterateFrobenius on the top field.
Action of iterateFrobenius on the bottom field.
Version of iterateFrobenius as a semilinear map over a subfield F of K, wrt the
iterated Frobenius homomorphism on F.
Equations
- IsPurelyInseparable.iterateFrobeniusₛₗ F K L p hn = { toFun := (↑↑(IsPurelyInseparable.iterateFrobenius K L p hn)).toFun, map_add' := ⋯, map_smul' := ⋯ }
Instances For
Action of iterateFrobeniusₛₗ on the top field.
Action of iterateFrobeniusₛₗ on the bottom field.
Action of iterateFrobeniusₛₗ on the base field.