Set family operations #
This file defines a few binary operations on Set α for use in set family combinatorics.
Main declarations #
s ⊻ t: Set of elements of the forma ⊔ bwherea ∈ s,b ∈ t.s ⊼ t: Set of elements of the forma ⊓ bwherea ∈ s,b ∈ t.
Notation #
We define the following notation in locale SetFamily:
s ⊻ ts ⊼ t
References #
[B. Bollobás, Combinatorics][bollobas1986]
The point-wise supremum a ⊔ b of a, b : α.
Equations
- «term_⊻_» = Lean.ParserDescr.trailingNode `«term_⊻_» 74 74 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊻ ") (Lean.ParserDescr.cat `term 75))
Instances For
The point-wise infimum a ⊓ b of a, b : α.
Equations
- «term_⊼_» = Lean.ParserDescr.trailingNode `«term_⊼_» 75 75 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊼ ") (Lean.ParserDescr.cat `term 76))
Instances For
s ⊻ t is the set of elements of the form a ⊔ b where a ∈ s, b ∈ t.
Equations
- Set.hasSups = { sups := Set.image2 fun (x1 x2 : α) => x1 ⊔ x2 }
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Set.image_sups
{F : Type u_1}
{α : Type u_2}
{β : Type u_3}
[SemilatticeSup α]
[SemilatticeSup β]
[FunLike F α β]
[SupHomClass F α β]
(f : F)
(s t : Set α)
:
@[simp]
@[simp]
s ⊼ t is the set of elements of the form a ⊓ b where a ∈ s, b ∈ t.
Equations
- Set.hasInfs = { infs := Set.image2 fun (x1 x2 : α) => x1 ⊓ x2 }
Instances For
@[simp]
@[simp]
@[simp]
@[simp]
theorem
Set.image_infs
{F : Type u_1}
{α : Type u_2}
{β : Type u_3}
[SemilatticeInf α]
[SemilatticeInf β]
[FunLike F α β]
[InfHomClass F α β]
(f : F)
(s t : Set α)
:
@[simp]
@[simp]
@[simp]
@[simp]