Documentation

Mathlib.Data.List.AList

Association Lists #

This file defines association lists. An association list is a list where every element consists of a key and a value, and no two entries have the same key. The type of the value is allowed to be dependent on the type of the key.

This type dependence is implemented using Sigma: The elements of the list are of type Sigma β, for some type index β.

Main definitions #

Association lists are represented by the AList structure. This file defines this structure and provides ways to access, modify, and combine ALists.

References #

structure AList {α : Type u} (β : αType v) :
Type (max u v)

AList β is a key-value map stored as a List (i.e. a linked list). It is a wrapper around certain List functions with the added constraint that the list have unique keys.

  • entries : List (Sigma β)

    The underlying List of an AList

  • nodupKeys : self.entries.NodupKeys

    There are no duplicate keys in entries

Instances For
    theorem AList.nodupKeys {α : Type u} {β : αType v} (self : AList β) :
    self.entries.NodupKeys

    There are no duplicate keys in entries

    def List.toAList {α : Type u} [DecidableEq α] {β : αType v} (l : List (Sigma β)) :

    Given l : List (Sigma β), create a term of type AList β by removing entries with duplicate keys.

    Equations
    • l.toAList = { entries := l.dedupKeys, nodupKeys := }
    Instances For
      theorem AList.ext_iff {α : Type u} {β : αType v} {s : AList β} {t : AList β} :
      s = t s.entries = t.entries
      theorem AList.ext {α : Type u} {β : αType v} {s : AList β} {t : AList β} :
      s.entries = t.entriess = t
      instance AList.instDecidableEq {α : Type u} {β : αType v} [DecidableEq α] [(a : α) → DecidableEq (β a)] :
      Equations
      • xs.instDecidableEq ys = .mpr inferInstance

      keys #

      def AList.keys {α : Type u} {β : αType v} (s : AList β) :
      List α

      The list of keys of an association list.

      Equations
      • s.keys = s.entries.keys
      Instances For
        theorem AList.keys_nodup {α : Type u} {β : αType v} (s : AList β) :
        s.keys.Nodup

        mem #

        instance AList.instMembership {α : Type u} {β : αType v} :

        The predicate a ∈ s means that s has a value associated to the key a.

        Equations
        • AList.instMembership = { mem := fun (s : AList β) (a : α) => a s.keys }
        theorem AList.mem_keys {α : Type u} {β : αType v} {a : α} {s : AList β} :
        a s a s.keys
        theorem AList.mem_of_perm {α : Type u} {β : αType v} {a : α} {s₁ : AList β} {s₂ : AList β} (p : s₁.entries.Perm s₂.entries) :
        a s₁ a s₂

        empty #

        instance AList.instEmptyCollection {α : Type u} {β : αType v} :

        The empty association list.

        Equations
        • AList.instEmptyCollection = { emptyCollection := { entries := [], nodupKeys := } }
        instance AList.instInhabited {α : Type u} {β : αType v} :
        Equations
        • AList.instInhabited = { default := }
        @[simp]
        theorem AList.not_mem_empty {α : Type u} {β : αType v} (a : α) :
        a
        @[simp]
        theorem AList.empty_entries {α : Type u} {β : αType v} :
        .entries = []
        @[simp]
        theorem AList.keys_empty {α : Type u} {β : αType v} :
        .keys = []

        singleton #

        def AList.singleton {α : Type u} {β : αType v} (a : α) (b : β a) :

        The singleton association list.

        Equations
        Instances For
          @[simp]
          theorem AList.singleton_entries {α : Type u} {β : αType v} (a : α) (b : β a) :
          (AList.singleton a b).entries = [a, b]
          @[simp]
          theorem AList.keys_singleton {α : Type u} {β : αType v} (a : α) (b : β a) :
          (AList.singleton a b).keys = [a]

          lookup #

          def AList.lookup {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : AList β) :
          Option (β a)

          Look up the value associated to a key in an association list.

          Equations
          Instances For
            @[simp]
            theorem AList.lookup_empty {α : Type u} {β : αType v} [DecidableEq α] (a : α) :
            theorem AList.lookup_isSome {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s : AList β} :
            (AList.lookup a s).isSome = true a s
            theorem AList.lookup_eq_none {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s : AList β} :
            AList.lookup a s = none as
            theorem AList.mem_lookup_iff {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s : AList β} :
            b AList.lookup a s a, b s.entries
            theorem AList.perm_lookup {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s₁ : AList β} {s₂ : AList β} (p : s₁.entries.Perm s₂.entries) :
            instance AList.instDecidableMem {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : AList β) :
            Equations
            theorem AList.keys_subset_keys_of_entries_subset_entries {α : Type u} {β : αType v} {s₁ : AList β} {s₂ : AList β} (h : s₁.entries s₂.entries) :
            s₁.keys s₂.keys

            replace #

            def AList.replace {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) (s : AList β) :

            Replace a key with a given value in an association list. If the key is not present it does nothing.

            Equations
            Instances For
              @[simp]
              theorem AList.keys_replace {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) (s : AList β) :
              (AList.replace a b s).keys = s.keys
              @[simp]
              theorem AList.mem_replace {α : Type u} {β : αType v} [DecidableEq α] {a : α} {a' : α} {b : β a} {s : AList β} :
              a' AList.replace a b s a' s
              theorem AList.perm_replace {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s₁ : AList β} {s₂ : AList β} :
              s₁.entries.Perm s₂.entries(AList.replace a b s₁).entries.Perm (AList.replace a b s₂).entries
              def AList.foldl {α : Type u} {β : αType v} {δ : Type w} (f : δ(a : α) → β aδ) (d : δ) (m : AList β) :
              δ

              Fold a function over the key-value pairs in the map.

              Equations
              Instances For

                erase #

                def AList.erase {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : AList β) :

                Erase a key from the map. If the key is not present, do nothing.

                Equations
                Instances For
                  @[simp]
                  theorem AList.keys_erase {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : AList β) :
                  (AList.erase a s).keys = s.keys.erase a
                  @[simp]
                  theorem AList.mem_erase {α : Type u} {β : αType v} [DecidableEq α] {a : α} {a' : α} {s : AList β} :
                  a' AList.erase a s a' a a' s
                  theorem AList.perm_erase {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s₁ : AList β} {s₂ : AList β} :
                  s₁.entries.Perm s₂.entries(AList.erase a s₁).entries.Perm (AList.erase a s₂).entries
                  @[simp]
                  theorem AList.lookup_erase {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : AList β) :
                  @[simp]
                  theorem AList.lookup_erase_ne {α : Type u} {β : αType v} [DecidableEq α] {a : α} {a' : α} {s : AList β} (h : a a') :
                  theorem AList.erase_erase {α : Type u} {β : αType v} [DecidableEq α] (a : α) (a' : α) (s : AList β) :

                  insert #

                  def AList.insert {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) (s : AList β) :

                  Insert a key-value pair into an association list and erase any existing pair with the same key.

                  Equations
                  Instances For
                    @[simp]
                    theorem AList.insert_entries {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s : AList β} :
                    (AList.insert a b s).entries = a, b :: List.kerase a s.entries
                    theorem AList.insert_entries_of_neg {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s : AList β} (h : as) :
                    (AList.insert a b s).entries = a, b :: s.entries
                    theorem AList.insert_of_neg {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s : AList β} (h : as) :
                    AList.insert a b s = { entries := a, b :: s.entries, nodupKeys := }
                    @[simp]
                    theorem AList.insert_empty {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) :
                    @[simp]
                    theorem AList.mem_insert {α : Type u} {β : αType v} [DecidableEq α] {a : α} {a' : α} {b' : β a'} (s : AList β) :
                    a AList.insert a' b' s a = a' a s
                    @[simp]
                    theorem AList.keys_insert {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} (s : AList β) :
                    (AList.insert a b s).keys = a :: s.keys.erase a
                    theorem AList.perm_insert {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s₁ : AList β} {s₂ : AList β} (p : s₁.entries.Perm s₂.entries) :
                    (AList.insert a b s₁).entries.Perm (AList.insert a b s₂).entries
                    @[simp]
                    theorem AList.lookup_insert {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} (s : AList β) :
                    @[simp]
                    theorem AList.lookup_insert_ne {α : Type u} {β : αType v} [DecidableEq α] {a : α} {a' : α} {b' : β a'} {s : AList β} (h : a a') :
                    @[simp]
                    theorem AList.lookup_insert_eq_none {α : Type u} {β : αType v} [DecidableEq α] {l : AList β} {k : α} {k' : α} {v : β k} :
                    AList.lookup k' (AList.insert k v l) = none k' k AList.lookup k' l = none
                    @[simp]
                    theorem AList.lookup_to_alist {α : Type u} {β : αType v} [DecidableEq α] {a : α} (s : List (Sigma β)) :
                    AList.lookup a s.toAList = List.dlookup a s
                    @[simp]
                    theorem AList.insert_insert {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {b' : β a} (s : AList β) :
                    theorem AList.insert_insert_of_ne {α : Type u} {β : αType v} [DecidableEq α] {a : α} {a' : α} {b : β a} {b' : β a'} (s : AList β) (h : a a') :
                    (AList.insert a' b' (AList.insert a b s)).entries.Perm (AList.insert a b (AList.insert a' b' s)).entries
                    @[simp]
                    theorem AList.insert_singleton_eq {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {b' : β a} :
                    @[simp]
                    theorem AList.entries_toAList {α : Type u} {β : αType v} [DecidableEq α] (xs : List (Sigma β)) :
                    xs.toAList.entries = xs.dedupKeys
                    theorem AList.toAList_cons {α : Type u} {β : αType v} [DecidableEq α] (a : α) (b : β a) (xs : List (Sigma β)) :
                    (a, b :: xs).toAList = AList.insert a b xs.toAList
                    theorem AList.mk_cons_eq_insert {α : Type u} {β : αType v} [DecidableEq α] (c : Sigma β) (l : List (Sigma β)) (h : (c :: l).NodupKeys) :
                    { entries := c :: l, nodupKeys := h } = AList.insert c.fst c.snd { entries := l, nodupKeys := }
                    @[irreducible]
                    def AList.insertRec {α : Type u} {β : αType v} [DecidableEq α] {C : AList βSort u_1} (H0 : C ) (IH : (a : α) → (b : β a) → (l : AList β) → alC lC (AList.insert a b l)) (l : AList β) :
                    C l

                    Recursion on an AList, using insert. Use as induction l.

                    Equations
                    • AList.insertRec H0 IH { entries := [], nodupKeys := nodupKeys } = H0
                    • AList.insertRec H0 IH { entries := c :: l, nodupKeys := h } = .mpr (IH c.fst c.snd { entries := l, nodupKeys := } (AList.insertRec H0 IH { entries := l, nodupKeys := }))
                    Instances For
                      @[simp]
                      theorem AList.insertRec_empty {α : Type u} {β : αType v} [DecidableEq α] {C : AList βSort u_1} (H0 : C ) (IH : (a : α) → (b : β a) → (l : AList β) → alC lC (AList.insert a b l)) :
                      theorem AList.insertRec_insert {α : Type u} {β : αType v} [DecidableEq α] {C : AList βSort u_1} (H0 : C ) (IH : (a : α) → (b : β a) → (l : AList β) → alC lC (AList.insert a b l)) {c : Sigma β} {l : AList β} (h : c.fstl) :
                      AList.insertRec H0 IH (AList.insert c.fst c.snd l) = IH c.fst c.snd l h (AList.insertRec H0 IH l)
                      theorem AList.insertRec_insert_mk {α : Type u} {β : αType v} [DecidableEq α] {C : AList βSort u_1} (H0 : C ) (IH : (a : α) → (b : β a) → (l : AList β) → alC lC (AList.insert a b l)) {a : α} (b : β a) {l : AList β} (h : al) :
                      AList.insertRec H0 IH (AList.insert a b l) = IH a b l h (AList.insertRec H0 IH l)

                      extract #

                      def AList.extract {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : AList β) :
                      Option (β a) × AList β

                      Erase a key from the map, and return the corresponding value, if found.

                      Equations
                      Instances For
                        @[simp]
                        theorem AList.extract_eq_lookup_erase {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s : AList β) :

                        union #

                        def AList.union {α : Type u} {β : αType v} [DecidableEq α] (s₁ : AList β) (s₂ : AList β) :

                        s₁ ∪ s₂ is the key-based union of two association lists. It is left-biased: if there exists an a ∈ s₁, lookup a (s₁ ∪ s₂) = lookup a s₁.

                        Equations
                        • s₁.union s₂ = { entries := s₁.entries.kunion s₂.entries, nodupKeys := }
                        Instances For
                          instance AList.instUnion {α : Type u} {β : αType v} [DecidableEq α] :
                          Equations
                          • AList.instUnion = { union := AList.union }
                          @[simp]
                          theorem AList.union_entries {α : Type u} {β : αType v} [DecidableEq α] {s₁ : AList β} {s₂ : AList β} :
                          (s₁ s₂).entries = s₁.entries.kunion s₂.entries
                          @[simp]
                          theorem AList.empty_union {α : Type u} {β : αType v} [DecidableEq α] {s : AList β} :
                          s = s
                          @[simp]
                          theorem AList.union_empty {α : Type u} {β : αType v} [DecidableEq α] {s : AList β} :
                          s = s
                          @[simp]
                          theorem AList.mem_union {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s₁ : AList β} {s₂ : AList β} :
                          a s₁ s₂ a s₁ a s₂
                          theorem AList.perm_union {α : Type u} {β : αType v} [DecidableEq α] {s₁ : AList β} {s₂ : AList β} {s₃ : AList β} {s₄ : AList β} (p₁₂ : s₁.entries.Perm s₂.entries) (p₃₄ : s₃.entries.Perm s₄.entries) :
                          (s₁ s₃).entries.Perm (s₂ s₄).entries
                          theorem AList.union_erase {α : Type u} {β : αType v} [DecidableEq α] (a : α) (s₁ : AList β) (s₂ : AList β) :
                          AList.erase a (s₁ s₂) = AList.erase a s₁ AList.erase a s₂
                          @[simp]
                          theorem AList.lookup_union_left {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s₁ : AList β} {s₂ : AList β} :
                          a s₁AList.lookup a (s₁ s₂) = AList.lookup a s₁
                          @[simp]
                          theorem AList.lookup_union_right {α : Type u} {β : αType v} [DecidableEq α] {a : α} {s₁ : AList β} {s₂ : AList β} :
                          as₁AList.lookup a (s₁ s₂) = AList.lookup a s₂
                          theorem AList.mem_lookup_union {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s₁ : AList β} {s₂ : AList β} :
                          b AList.lookup a (s₁ s₂) b AList.lookup a s₁ as₁ b AList.lookup a s₂
                          @[simp]
                          theorem AList.lookup_union_eq_some {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s₁ : AList β} {s₂ : AList β} :
                          AList.lookup a (s₁ s₂) = some b AList.lookup a s₁ = some b as₁ AList.lookup a s₂ = some b
                          theorem AList.mem_lookup_union_middle {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s₁ : AList β} {s₂ : AList β} {s₃ : AList β} :
                          b AList.lookup a (s₁ s₃)as₂b AList.lookup a (s₁ s₂ s₃)
                          theorem AList.insert_union {α : Type u} {β : αType v} [DecidableEq α] {a : α} {b : β a} {s₁ : AList β} {s₂ : AList β} :
                          AList.insert a b (s₁ s₂) = AList.insert a b s₁ s₂
                          theorem AList.union_assoc {α : Type u} {β : αType v} [DecidableEq α] {s₁ : AList β} {s₂ : AList β} {s₃ : AList β} :
                          (s₁ s₂ s₃).entries.Perm (s₁ (s₂ s₃)).entries

                          disjoint #

                          def AList.Disjoint {α : Type u} {β : αType v} (s₁ : AList β) (s₂ : AList β) :

                          Two associative lists are disjoint if they have no common keys.

                          Equations
                          • s₁.Disjoint s₂ = ks₁.keys, ks₂.keys
                          Instances For
                            theorem AList.union_comm_of_disjoint {α : Type u} {β : αType v} [DecidableEq α] {s₁ : AList β} {s₂ : AList β} (h : s₁.Disjoint s₂) :
                            (s₁ s₂).entries.Perm (s₂ s₁).entries