Finite intervals of finitely supported functions #
This file provides the LocallyFiniteOrder instance for ι →₀ α when α itself is locally
finite and calculates the cardinality of its finite intervals.
Main declarations #
Finsupp.rangeSingleton: Postcomposition withSingleton.singletononFinsetas aFinsupp.Finsupp.rangeIcc: Postcomposition withFinset.Iccas aFinsupp.
Both these definitions use the fact that 0 = {0} to ensure that the resulting function is finitely
supported.
@[simp]
@[simp]
theorem
Finsupp.mem_rangeSingleton_apply_iff
{ι : Type u_1}
{α : Type u_2}
[Zero α]
{f : ι →₀ α}
{i : ι}
{a : α}
:
def
Finsupp.rangeIcc
{ι : Type u_1}
{α : Type u_2}
[Zero α]
[PartialOrder α]
[LocallyFiniteOrder α]
[DecidableEq ι]
(f g : ι →₀ α)
:
Pointwise Finset.Icc bundled as a Finsupp.
Equations
Instances For
@[simp]
theorem
Finsupp.rangeIcc_toFun
{ι : Type u_1}
{α : Type u_2}
[Zero α]
[PartialOrder α]
[LocallyFiniteOrder α]
[DecidableEq ι]
(f g : ι →₀ α)
(i : ι)
:
theorem
Finsupp.coe_rangeIcc
{ι : Type u_1}
{α : Type u_2}
[Zero α]
[PartialOrder α]
[LocallyFiniteOrder α]
[DecidableEq ι]
{i : ι}
(f g : ι →₀ α)
:
@[simp]
theorem
Finsupp.rangeIcc_support
{ι : Type u_1}
{α : Type u_2}
[Zero α]
[PartialOrder α]
[LocallyFiniteOrder α]
[DecidableEq ι]
(f g : ι →₀ α)
:
theorem
Finsupp.mem_rangeIcc_apply_iff
{ι : Type u_1}
{α : Type u_2}
[Zero α]
[PartialOrder α]
[LocallyFiniteOrder α]
[DecidableEq ι]
{f g : ι →₀ α}
{i : ι}
{a : α}
:
instance
Finsupp.instLocallyFiniteOrder
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
[DecidableEq ι]
[DecidableEq α]
:
LocallyFiniteOrder (ι →₀ α)
Equations
- Finsupp.instLocallyFiniteOrder = LocallyFiniteOrder.ofIcc (ι →₀ α) (fun (f g : ι →₀ α) => (f.support ∪ g.support).finsupp ⇑(f.rangeIcc g)) ⋯
theorem
Finsupp.Icc_eq
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
[DecidableEq ι]
[DecidableEq α]
(f g : ι →₀ α)
:
theorem
Finsupp.card_Icc
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
[DecidableEq ι]
[DecidableEq α]
(f g : ι →₀ α)
:
theorem
Finsupp.card_Ico
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
[DecidableEq ι]
[DecidableEq α]
(f g : ι →₀ α)
:
theorem
Finsupp.card_Ioc
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
[DecidableEq ι]
[DecidableEq α]
(f g : ι →₀ α)
:
theorem
Finsupp.card_Ioo
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[Zero α]
[LocallyFiniteOrder α]
[DecidableEq ι]
[DecidableEq α]
(f g : ι →₀ α)
:
theorem
Finsupp.card_uIcc
{ι : Type u_1}
{α : Type u_2}
[Lattice α]
[Zero α]
[LocallyFiniteOrder α]
(f g : ι →₀ α)
:
theorem
Finsupp.card_Iic
{ι : Type u_1}
{α : Type u_2}
[AddCommMonoid α]
[PartialOrder α]
[CanonicallyOrderedAdd α]
[OrderBot α]
[LocallyFiniteOrder α]
[DecidableEq ι]
[DecidableEq α]
(f : ι →₀ α)
:
theorem
Finsupp.card_Iio
{ι : Type u_1}
{α : Type u_2}
[AddCommMonoid α]
[PartialOrder α]
[CanonicallyOrderedAdd α]
[OrderBot α]
[LocallyFiniteOrder α]
[DecidableEq ι]
[DecidableEq α]
(f : ι →₀ α)
: