Range of f : Fin (n + 1) → α as a Flag #
Let f : Fin (n + 1) → α be an (n + 1)-tuple (f₀, …, fₙ) such that
f₀ = ⊥andfₙ = ⊤;fₖ₊₁weakly coversfₖfor all0 ≤ k < n; this means thatfₖ ≤ fₖ₊₁and there is nocsuch thatfₖ<c<fₖ₊₁. Then the range offis a maximal chain.
We formulate this result in terms of IsMaxChain and Flag.
theorem
IsMaxChain.range_fin_of_covBy
{α : Type u_1}
[PartialOrder α]
[BoundedOrder α]
{n : ℕ}
{f : Fin (n + 1) → α}
(h0 : f 0 = ⊥)
(hlast : f (Fin.last n) = ⊤)
(hcovBy : ∀ (k : Fin n), f k.castSucc ⩿ f k.succ)
:
IsMaxChain (fun (x1 x2 : α) => x1 ≤ x2) (Set.range f)
Let f : Fin (n + 1) → α be an (n + 1)-tuple (f₀, …, fₙ) such that
f₀ = ⊥andfₙ = ⊤;fₖ₊₁weakly coversfₖfor all0 ≤ k < n; this means thatfₖ ≤ fₖ₊₁and there is nocsuch thatfₖ<c<fₖ₊₁. Then the range offis a maximal chain.
def
Flag.rangeFin
{α : Type u_1}
[PartialOrder α]
[BoundedOrder α]
{n : ℕ}
(f : Fin (n + 1) → α)
(h0 : f 0 = ⊥)
(hlast : f (Fin.last n) = ⊤)
(hcovBy : ∀ (k : Fin n), f k.castSucc ⩿ f k.succ)
:
Flag α
Let f : Fin (n + 1) → α be an (n + 1)-tuple (f₀, …, fₙ) such that
f₀ = ⊥andfₙ = ⊤;fₖ₊₁weakly coversfₖfor all0 ≤ k < n; this means thatfₖ ≤ fₖ₊₁and there is nocsuch thatfₖ<c<fₖ₊₁. Then the range offis aFlag α.
Equations
- Flag.rangeFin f h0 hlast hcovBy = { carrier := Set.range f, Chain' := ⋯, max_chain' := ⋯ }