Existence of the iteration of a successor structure #
Given Φ : SuccStruct C, we show by transfinite induction
that for any element j in a well ordered set J,
the type Φ.Iteration j is nonempty.
def
CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfBot
{C : Type u_1}
[Category.{u_2, u_1} C]
(Φ : SuccStruct C)
(J : Type u)
[LinearOrder J]
[OrderBot J]
[SuccOrder J]
[WellFoundedLT J]
[Limits.HasIterationOfShape J C]
:
The obvious term in Φ.Iteration ε ⊥ that is given by Φ.X₀.
Equations
- CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfBot Φ J = { F := (CategoryTheory.Functor.const ↑(Set.Iic ⊥)).obj Φ.X₀, obj_bot := ⋯, arrowSucc_eq := ⋯, arrowMap_limit := ⋯ }
Instances For
noncomputable def
CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfSucc
{C : Type u_1}
[Category.{u_2, u_1} C]
{Φ : SuccStruct C}
{J : Type u}
[LinearOrder J]
[OrderBot J]
[SuccOrder J]
[WellFoundedLT J]
[Limits.HasIterationOfShape J C]
{j : J}
(hj : ¬IsMax j)
(iter : Φ.Iteration j)
:
Φ.Iteration (Order.succ j)
When j : J is not maximal, this is the extension in Φ.Iteration (Order.succ j)
of any iter : Φ.Iteration j.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfLimit.inductiveSystem
{C : Type u_1}
[Category.{u_2, u_1} C]
{Φ : SuccStruct C}
{J : Type u}
[LinearOrder J]
[OrderBot J]
[SuccOrder J]
[WellFoundedLT J]
[Limits.HasIterationOfShape J C]
{j : J}
(iter : (i : J) → i < j → Φ.Iteration i)
:
Assuming j : J is a limit element and that we have ∀ (i : J), i < j → Φ.Iteration i,
this is the inductive system Set.Iio j ⥤ C which sends ⟨i, _⟩ to
(iter i _).F.obj ⟨i, _⟩.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfLimit.inductiveSystem_map
{C : Type u_1}
[Category.{u_2, u_1} C]
{Φ : SuccStruct C}
{J : Type u}
[LinearOrder J]
[OrderBot J]
[SuccOrder J]
[WellFoundedLT J]
[Limits.HasIterationOfShape J C]
{j : J}
(iter : (i : J) → i < j → Φ.Iteration i)
{i₁ i₂ : ↑(Set.Iio j)}
(f : i₁ ⟶ i₂)
:
@[simp]
theorem
CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfLimit.inductiveSystem_obj
{C : Type u_1}
[Category.{u_2, u_1} C]
{Φ : SuccStruct C}
{J : Type u}
[LinearOrder J]
[OrderBot J]
[SuccOrder J]
[WellFoundedLT J]
[Limits.HasIterationOfShape J C]
{j : J}
(iter : (i : J) → i < j → Φ.Iteration i)
(i : ↑(Set.Iio j))
:
noncomputable def
CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfLimit.functor
{C : Type u_1}
[Category.{u_2, u_1} C]
{Φ : SuccStruct C}
{J : Type u}
[LinearOrder J]
[OrderBot J]
[SuccOrder J]
[WellFoundedLT J]
[Limits.HasIterationOfShape J C]
{j : J}
(hj : Order.IsSuccLimit j)
(iter : (i : J) → i < j → Φ.Iteration i)
:
The extension of inductiveSystem iter to a functor Set.Iic j ⥤ C which
sends the top element to the colimit of inductiveSystem iter.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfLimit.functor_obj
{C : Type u_1}
[Category.{u_2, u_1} C]
{Φ : SuccStruct C}
{J : Type u}
[LinearOrder J]
[OrderBot J]
[SuccOrder J]
[WellFoundedLT J]
[Limits.HasIterationOfShape J C]
{j : J}
(hj : Order.IsSuccLimit j)
(iter : (i : J) → i < j → Φ.Iteration i)
(i : J)
(hi : i < j)
{k : J}
(iter' : Φ.Iteration k)
(hk : i ≤ k)
:
theorem
CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfLimit.arrowMap_functor
{C : Type u_1}
[Category.{u_2, u_1} C]
{Φ : SuccStruct C}
{J : Type u}
[LinearOrder J]
[OrderBot J]
[SuccOrder J]
[WellFoundedLT J]
[Limits.HasIterationOfShape J C]
{j : J}
(hj : Order.IsSuccLimit j)
(iter : (i : J) → i < j → Φ.Iteration i)
(i₁ i₂ : J)
(h₁₂ : i₁ ≤ i₂)
(h₂ : i₂ < j)
:
theorem
CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfLimit.arrowMap_functor_to_top
{C : Type u_1}
[Category.{u_2, u_1} C]
{Φ : SuccStruct C}
{J : Type u}
[LinearOrder J]
[OrderBot J]
[SuccOrder J]
[WellFoundedLT J]
[Limits.HasIterationOfShape J C]
{j : J}
(hj : Order.IsSuccLimit j)
(iter : (i : J) → i < j → Φ.Iteration i)
(i : J)
(hi : i < j)
:
noncomputable def
CategoryTheory.SmallObject.SuccStruct.Iteration.mkOfLimit
{C : Type u_1}
[Category.{u_2, u_1} C]
{Φ : SuccStruct C}
{J : Type u}
[LinearOrder J]
[OrderBot J]
[SuccOrder J]
[WellFoundedLT J]
[Limits.HasIterationOfShape J C]
{j : J}
(hj : Order.IsSuccLimit j)
(iter : (i : J) → i < j → Φ.Iteration i)
:
Φ.Iteration j
When j is a limit element, this is the element in Φ.Iteration j
that is constructed from elements in Φ.Iteration i for all i < j.
Equations
- One or more equations did not get rendered due to their size.
Instances For
instance
CategoryTheory.SmallObject.SuccStruct.Iteration.nonempty
{C : Type u_1}
[Category.{u_2, u_1} C]
(Φ : SuccStruct C)
{J : Type u}
[LinearOrder J]
[OrderBot J]
[SuccOrder J]
[WellFoundedLT J]
[Limits.HasIterationOfShape J C]
(j : J)
: