The site induced by a morphism property #
Let C be a category with pullbacks and P be a multiplicative morphism property which is
stable under base change. Then P induces a pretopology, where coverings are given by presieves
whose elements satisfy P.
Standard examples of pretopologies in algebraic geometry, such as the étale site, are obtained from this construction by intersecting with the pretopology of surjective families.
def
CategoryTheory.MorphismProperty.pretopology
{C : Type u_1}
[Category.{u_2, u_1} C]
[Limits.HasPullbacks C]
(P : MorphismProperty C)
[P.IsMultiplicative]
[P.IsStableUnderBaseChange]
:
If P is a multiplicative morphism property which is stable under base change on a category
C with pullbacks, then P induces a pretopology, where coverings are given by presieves whose
elements satisfy P.
Equations
- P.pretopology = { coverings := fun (X : C) (S : CategoryTheory.Presieve X) => ∀ {Y : C} {f : Y ⟶ X}, S f → P f, has_isos := ⋯, pullbacks := ⋯, transitive := ⋯ }
Instances For
@[reducible, inline]
abbrev
CategoryTheory.MorphismProperty.grothendieckTopology
{C : Type u_1}
[Category.{u_2, u_1} C]
[Limits.HasPullbacks C]
(P : MorphismProperty C)
[P.IsMultiplicative]
[P.IsStableUnderBaseChange]
:
To a morphism property P satisfying the conditions of MorphismProperty.pretopology, we
associate the Grothendieck topology generated by P.pretopology.
Instances For
theorem
CategoryTheory.MorphismProperty.pretopology_le
{C : Type u_1}
[Category.{u_2, u_1} C]
[Limits.HasPullbacks C]
{P Q : MorphismProperty C}
[P.IsMultiplicative]
[P.IsStableUnderBaseChange]
[Q.IsMultiplicative]
[Q.IsStableUnderBaseChange]
(hPQ : P ≤ Q)
:
theorem
CategoryTheory.MorphismProperty.pretopology_inf
{C : Type u_1}
[Category.{u_2, u_1} C]
[Limits.HasPullbacks C]
(P Q : MorphismProperty C)
[P.IsMultiplicative]
[P.IsStableUnderBaseChange]
[Q.IsMultiplicative]
[Q.IsStableUnderBaseChange]
: