Left and right lifting properties #
Given a morphism property T, we define the left and right lifting property with respect to T.
We show that the left lifting property is stable under retracts, cobase change, coproducts, and composition, with dual statements for the right lifting property.
Given T : MorphismProperty C, this is the class of morphisms that have the
left lifting property (llp) with respect to T.
Equations
- T.llp f = ∀ ⦃X Y : C⦄ (g : X ⟶ Y), T g → CategoryTheory.HasLiftingProperty f g
Instances For
Given T : MorphismProperty C, this is the class of morphisms that have the
right lifting property (rlp) with respect to T.
Equations
- T.rlp f = ∀ ⦃X Y : C⦄ (g : X ⟶ Y), T g → CategoryTheory.HasLiftingProperty g f
Instances For
theorem
CategoryTheory.MorphismProperty.llp_of_isIso
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
{A B : C}
(i : A ⟶ B)
[IsIso i]
:
T.llp i
theorem
CategoryTheory.MorphismProperty.rlp_of_isIso
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
{X Y : C}
(f : X ⟶ Y)
[IsIso f]
:
T.rlp f
instance
CategoryTheory.MorphismProperty.llp_isStableUnderRetracts
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
instance
CategoryTheory.MorphismProperty.rlp_isStableUnderRetracts
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
instance
CategoryTheory.MorphismProperty.llp_isStableUnderCobaseChange
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
instance
CategoryTheory.MorphismProperty.rlp_isStableUnderBaseChange
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
instance
CategoryTheory.MorphismProperty.llp_isMultiplicative
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
instance
CategoryTheory.MorphismProperty.rlp_isMultiplicative
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
instance
CategoryTheory.MorphismProperty.llp_isStableUnderCoproductsOfShape
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
(J : Type u_1)
:
instance
CategoryTheory.MorphismProperty.rlp_isStableUnderProductsOfShape
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
(J : Type u_1)
:
theorem
CategoryTheory.MorphismProperty.le_llp_iff_le_rlp
{C : Type u}
[Category.{v, u} C]
(T T' : MorphismProperty C)
:
theorem
CategoryTheory.MorphismProperty.le_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.rlp_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.llp_rlp_llp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
theorem
CategoryTheory.MorphismProperty.pushouts_le_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.rlp_pushouts
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
theorem
CategoryTheory.MorphismProperty.colimitsOfShape_discrete_le_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
(J : Type w)
:
theorem
CategoryTheory.MorphismProperty.coproducts_le_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.rlp_coproducts
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
theorem
CategoryTheory.MorphismProperty.retracts_le_llp_rlp
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
:
@[simp]
theorem
CategoryTheory.MorphismProperty.rlp_retracts
{C : Type u}
[Category.{v, u} C]
(T : MorphismProperty C)
: