Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.Cospan

Cospan & Span #

We define a category WalkingCospan (resp. WalkingSpan), which is the index category for the given data for a pullback (resp. pushout) diagram. Convenience methods cospan f g and span f g construct functors from the walking (co)span, hitting the given morphisms.

References #

@[reducible, inline]

The type of objects for the diagram indexing a pullback, defined as a special case of WidePullbackShape.

Equations
@[reducible, match_pattern, inline]

The central point of the walking cospan.

Equations
@[reducible, inline]

The type of objects for the diagram indexing a pushout, defined as a special case of WidePushoutShape.

Equations
@[reducible, match_pattern, inline]

The central point of the walking span.

Equations
@[reducible, inline]

The type of arrows for the diagram indexing a pullback.

Equations
@[reducible, inline]

The type of arrows for the diagram indexing a pushout.

Equations

To construct an isomorphism of cones over the walking cospan, it suffices to construct an isomorphism of the cone points and check it commutes with the legs to left and right.

Equations

To construct an isomorphism of cocones over the walking span, it suffices to construct an isomorphism of the cocone points and check it commutes with the legs from left and right.

Equations

cospan f g is the functor from the walking cospan hitting f and g.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

span f g is the functor from the walking span hitting f and g.

Equations
  • One or more equations did not get rendered due to their size.

A functor applied to a cospan is a cospan.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.spanCompIso {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} {Z : C} (f : X Y) (g : X Z) :

A functor applied to a span is a span.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Limits.cospanExt {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :

Construct an isomorphism of cospans from components.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.cospanExt_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.cospanExt_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.cospanExt_app_one {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.cospanExt_hom_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.cospanExt_hom_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.cospanExt_hom_app_one {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.cospanExt_inv_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.cospanExt_inv_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.cospanExt_inv_app_one {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Z} {g : Y Z} {f' : X' Z'} {g' : Y' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iZ.hom) (wg : CategoryTheory.CategoryStruct.comp iY.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
def CategoryTheory.Limits.spanExt {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :

Construct an isomorphism of spans from components.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Limits.spanExt_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.spanExt_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.spanExt_app_one {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.spanExt_hom_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.spanExt_hom_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.spanExt_hom_app_zero {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.spanExt_inv_app_left {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.spanExt_inv_app_right {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :
@[simp]
theorem CategoryTheory.Limits.spanExt_inv_app_zero {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (iX : X X') (iY : Y Y') (iZ : Z Z') {f : X Y} {g : X Z} {f' : X' Y'} {g' : X' Z'} (wf : CategoryTheory.CategoryStruct.comp iX.hom f' = CategoryTheory.CategoryStruct.comp f iY.hom) (wg : CategoryTheory.CategoryStruct.comp iX.hom g' = CategoryTheory.CategoryStruct.comp g iZ.hom) :