Cospan & Span #
We define a category WalkingCospan
(resp. WalkingSpan
), which is the index category
for the given data for a pullback (resp. pushout) diagram. Convenience methods cospan f g
and span f g
construct functors from the walking (co)span, hitting the given morphisms.
References #
The type of objects for the diagram indexing a pullback, defined as a special case of
WidePullbackShape
.
The left point of the walking cospan.
The right point of the walking cospan.
The central point of the walking cospan.
Equations
The type of objects for the diagram indexing a pushout, defined as a special case of
WidePushoutShape
.
The left point of the walking span.
The right point of the walking span.
The central point of the walking span.
Equations
The type of arrows for the diagram indexing a pullback.
Equations
- CategoryTheory.Limits.WalkingCospan.Hom = CategoryTheory.Limits.WidePullbackShape.Hom
The left arrow of the walking cospan.
The right arrow of the walking cospan.
The identity arrows of the walking cospan.
Equations
- ⋯ = ⋯
The type of arrows for the diagram indexing a pushout.
Equations
- CategoryTheory.Limits.WalkingSpan.Hom = CategoryTheory.Limits.WidePushoutShape.Hom
The left arrow of the walking span.
The right arrow of the walking span.
The identity arrows of the walking span.
Equations
- ⋯ = ⋯
To construct an isomorphism of cones over the walking cospan,
it suffices to construct an isomorphism
of the cone points and check it commutes with the legs to left
and right
.
Equations
To construct an isomorphism of cocones over the walking span,
it suffices to construct an isomorphism
of the cocone points and check it commutes with the legs from left
and right
.
Equations
cospan f g
is the functor from the walking cospan hitting f
and g
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
- AlgebraicGeometry.IsOpenImmersion.forgetCreatesPullbackOfLeft
- AlgebraicGeometry.IsOpenImmersion.forgetCreatesPullbackOfRight
- AlgebraicGeometry.IsOpenImmersion.forgetPreservesOfLeft
- AlgebraicGeometry.IsOpenImmersion.forgetPreservesOfRight
- AlgebraicGeometry.IsOpenImmersion.forgetToTopPreservesOfLeft
- AlgebraicGeometry.IsOpenImmersion.forgetToTopPreservesOfRight
- AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_left'
- AlgebraicGeometry.IsOpenImmersion.hasLimit_cospan_forget_of_right'
- AlgebraicGeometry.LocallyRingedSpace.GlueData.instPreservesLimitSheafedSpaceCommRingCatWalkingCospanCospanFForgetToSheafedSpace
- AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetPreservesPullbackOfLeft
- AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetPreservesPullbackOfRight
- AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetReflectsPullbackOfLeft
- AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetReflectsPullbackOfRight
- AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpacePreservesPullbackOfLeft
- AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpacePreservesPullbackOfRight
- AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpaceReflectsPullbackOfLeft
- AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToPresheafedSpaceReflectsPullbackOfRight
- AlgebraicGeometry.LocallyRingedSpace.IsOpenImmersion.forgetToTopPreservesPullbackOfLeft
- AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.forgetPreservesLimitsOfLeft
- AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.forgetPreservesLimitsOfRight
- AlgebraicGeometry.SheafedSpace.IsOpenImmersion.forgetCreatesPullbackOfLeft
- AlgebraicGeometry.SheafedSpace.IsOpenImmersion.forgetCreatesPullbackOfRight
- AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_left'
- AlgebraicGeometry.SheafedSpace.IsOpenImmersion.hasLimit_cospan_forget_of_right'
- AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpaceForgetPreservesOfLeft
- AlgebraicGeometry.SheafedSpace.IsOpenImmersion.sheafedSpaceForgetPreservesOfRight
- CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInl'
- CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInr
- CategoryTheory.PreservesPullbacksOfInclusions.preservesPullbackInr'
- CategoryTheory.instPreservesLimitWalkingCospanCospanOfIsIso
- CategoryTheory.instPreservesLimitWalkingCospanCospanOfIsIso_1
- CompHausLike.instCreatesLimitTopCatWalkingCospanCospanCompHausLikeToTop
- CompHausLike.instHasLimitWalkingCospanCospan
- CompHausLike.instPreservesLimitTopCatWalkingCospanCospanCompHausLikeToTop
- CompHausLike.instPreservesLimitWalkingCospanCospanToCompHausLike
span f g
is the functor from the walking span hitting f
and g
.
Equations
- One or more equations did not get rendered due to their size.
Every diagram indexing a pullback is naturally isomorphic (actually, equal) to a cospan
Equations
Every diagram indexing a pushout is naturally isomorphic (actually, equal) to a span
Equations
A functor applied to a cospan is a cospan.
Equations
- One or more equations did not get rendered due to their size.
A functor applied to a span is a span.
Equations
- One or more equations did not get rendered due to their size.
Construct an isomorphism of cospans from components.
Equations
- One or more equations did not get rendered due to their size.
Construct an isomorphism of spans from components.
Equations
- One or more equations did not get rendered due to their size.