Categories with finite limits. #
A typeclass for categories with all finite (co)limits.
A category has all finite limits if every functor J ⥤ C
with a FinCategory J
instance and J : Type
has a limit.
This is often called 'finitely complete'.
- out : ∀ (J : Type) [𝒥 : CategoryTheory.SmallCategory J] [inst : CategoryTheory.FinCategory J], CategoryTheory.Limits.HasLimitsOfShape J C
C
has all limits over any typeJ
whose objects and morphisms lie in the same universe and which hasFinType
objects and morphisms
Instances
- Action.instHasFiniteLimits
- AlgebraicGeometry.instHasFiniteLimitsScheme
- CategoryTheory.Abelian.hasFiniteLimits
- CategoryTheory.Limits.CompleteLattice.hasFiniteLimits_of_semilatticeInf_orderTop
- CategoryTheory.Limits.FintypeCat.hasFiniteLimits
- CategoryTheory.Limits.functor_category_hasFiniteLimits
- CategoryTheory.Limits.hasFiniteLimits_of_hasCountableLimits
- CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
- CategoryTheory.Limits.hasFiniteLimits_of_hasLimitsOfSize₀
- CategoryTheory.Limits.hasFiniteLimits_opposite
- CategoryTheory.Limits.instHasFiniteLimitsFunctor
- CategoryTheory.Over.hasFiniteLimits
- CategoryTheory.PreGaloisCategory.instHasFiniteLimits
- CategoryTheory.Sheaf.instHasFiniteLimits
- CategoryTheory.ShortComplex.hasFiniteLimits
- FDRep.instHasFiniteLimits
- FGModuleCat.instHasFiniteLimits
- HomologicalComplex.instHasFiniteLimits
- PresheafOfModules.hasFiniteLimits
- SheafOfModules.Finite.hasFiniteLimits
- instHasFiniteLimitsLightCondMod
- instHasFiniteLimitsLightCondSet
C
has all limits over any type J
whose objects and morphisms lie in the same universe
and which has FinType
objects and morphisms
Equations
- ⋯ = ⋯
If C
has all limits, it has finite limits.
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
We can always derive HasFiniteLimits C
by providing limits at an
arbitrary universe.
A category has all finite colimits if every functor J ⥤ C
with a FinCategory J
instance and J : Type
has a colimit.
This is often called 'finitely cocomplete'.
- out : ∀ (J : Type) [𝒥 : CategoryTheory.SmallCategory J] [inst : CategoryTheory.FinCategory J], CategoryTheory.Limits.HasColimitsOfShape J C
C
has all colimits over any typeJ
whose objects and morphisms lie in the same universe and which hasFintype
objects and morphisms
Instances
- Action.instHasFiniteColimits
- CategoryTheory.Abelian.hasFiniteColimits
- CategoryTheory.Limits.CompleteLattice.hasFiniteColimits_of_semilatticeSup_orderBot
- CategoryTheory.Limits.FintypeCat.hasFiniteColimits
- CategoryTheory.Limits.functor_category_hasFiniteColimits
- CategoryTheory.Limits.hasFiniteColimits_of_hasColimits
- CategoryTheory.Limits.hasFiniteColimits_of_hasColimitsOfSize₀
- CategoryTheory.Limits.hasFiniteColimits_of_hasCountableColimits
- CategoryTheory.Limits.hasFiniteColimits_opposite
- CategoryTheory.Limits.instHasFiniteColimitsFunctor
- CategoryTheory.Sheaf.instHasFiniteColimits
- CategoryTheory.ShortComplex.hasFiniteColimits
- HomologicalComplex.instHasFiniteColimits
- ModuleCat.instHasFiniteColimits
- PresheafOfModules.Finite.hasFiniteColimits
C
has all colimits over any type J
whose objects and morphisms lie in the same universe
and which has Fintype
objects and morphisms
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
We can always derive HasFiniteColimits C
by providing colimits at an
arbitrary universe.
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- CategoryTheory.Limits.WidePullbackShape.fintypeObj = inferInstanceAs (Fintype (Option J))
Equations
- One or more equations did not get rendered due to their size.
Equations
- CategoryTheory.Limits.WidePushoutShape.fintypeObj = ⋯.mpr inferInstance
Equations
- One or more equations did not get rendered due to their size.
Equations
- CategoryTheory.Limits.finCategoryWidePullback = { fintypeObj := inferInstance, fintypeHom := CategoryTheory.Limits.WidePullbackShape.fintypeHom }
Equations
- CategoryTheory.Limits.finCategoryWidePushout = { fintypeObj := inferInstance, fintypeHom := CategoryTheory.Limits.WidePushoutShape.fintypeHom }
HasFiniteWidePullbacks
represents a choice of wide pullback
for every finite collection of morphisms
- out : ∀ (J : Type) [inst : Finite J], CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WidePullbackShape J) C
C
has all wide pullbacks any FintypeJ
Instances
C
has all wide pullbacks any Fintype J
Equations
- ⋯ = ⋯
HasFiniteWidePushouts
represents a choice of wide pushout
for every finite collection of morphisms
- out : ∀ (J : Type) [inst : Finite J], CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.Limits.WidePushoutShape J) C
C
has all wide pushouts any FintypeJ
Instances
C
has all wide pushouts any Fintype J
Equations
- ⋯ = ⋯
Finite wide pullbacks are finite limits, so if C
has all finite limits,
it also has finite wide pullbacks
Finite wide pushouts are finite colimits, so if C
has all finite colimits,
it also has finite wide pushouts
Equations
- One or more equations did not get rendered due to their size.