Limit preservation properties of Functor.op and related constructions #
We formulate conditions about F which imply that F.op, F.unop, F.leftOp and F.rightOp
preserve certain (co)limits and vice versa.
If F : C ⥤ D preserves colimits of K.leftOp : Jᵒᵖ ⥤ C, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves
limits of K : J ⥤ Cᵒᵖ.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F : C ⥤ D preserves
limits of K : J ⥤ C.
If F : C ⥤ Dᵒᵖ preserves colimits of K.leftOp : Jᵒᵖ ⥤ C, then F.leftOp : Cᵒᵖ ⥤ D
preserves limits of K : J ⥤ Cᵒᵖ.
If F.leftOp : Cᵒᵖ ⥤ D preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F : C ⥤ Dᵒᵖ preserves
limits of K : J ⥤ C.
If F : Cᵒᵖ ⥤ D preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F.rightOp : C ⥤ Dᵒᵖ preserves
limits of K : J ⥤ C.
If F.rightOp : C ⥤ Dᵒᵖ preserves colimits of K.leftOp : Jᵒᵖ ⥤ Cᵒᵖ, then F : Cᵒᵖ ⥤ D
preserves limits of K : J ⥤ Cᵒᵖ.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F.unop : C ⥤ D preserves
limits of K : J ⥤ C.
If F.unop : C ⥤ D preserves colimits of K.leftOp : Jᵒᵖ ⥤ C, then F : Cᵒᵖ ⥤ Dᵒᵖ preserves
limits of K : J ⥤ Cᵒᵖ.
If F : C ⥤ D preserves limits of K.leftOp : Jᵒᵖ ⥤ C, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves
colimits of K : J ⥤ Cᵒᵖ.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F : C ⥤ D preserves
colimits of K : J ⥤ C.
If F : C ⥤ Dᵒᵖ preserves limits of K.leftOp : Jᵒᵖ ⥤ C, then F.leftOp : Cᵒᵖ ⥤ D preserves
colimits of K : J ⥤ Cᵒᵖ.
If F.leftOp : Cᵒᵖ ⥤ D preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F : C ⥤ Dᵒᵖ preserves
colimits of K : J ⥤ C.
If F : Cᵒᵖ ⥤ D preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F.rightOp : C ⥤ Dᵒᵖ preserves
colimits of K : J ⥤ C.
If F.rightOp : C ⥤ Dᵒᵖ preserves limits of K.leftOp : Jᵒᵖ ⥤ C, then F : Cᵒᵖ ⥤ D
preserves colimits of K : J ⥤ Cᵒᵖ.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves limits of K.op : Jᵒᵖ ⥤ Cᵒᵖ, then F.unop : C ⥤ D preserves
colimits of K : J ⥤ C.
If F.unop : C ⥤ D preserves limits of K.op : Jᵒᵖ ⥤ C, then F : Cᵒᵖ ⥤ Dᵒᵖ preserves
colimits of K : J ⥤ Cᵒᵖ.
If F : C ⥤ D preserves colimits of shape Jᵒᵖ, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves limits of
shape J.
If F : C ⥤ Dᵒᵖ preserves colimits of shape Jᵒᵖ, then F.leftOp : Cᵒᵖ ⥤ D preserves limits
of shape J.
If F : Cᵒᵖ ⥤ D preserves colimits of shape Jᵒᵖ, then F.rightOp : C ⥤ Dᵒᵖ preserves limits
of shape J.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits of shape Jᵒᵖ, then F.unop : C ⥤ D preserves limits of
shape J.
If F : C ⥤ D preserves limits of shape Jᵒᵖ, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits of
shape J.
If F : C ⥤ Dᵒᵖ preserves limits of shape Jᵒᵖ, then F.leftOp : Cᵒᵖ ⥤ D preserves colimits
of shape J.
If F : Cᵒᵖ ⥤ D preserves limits of shape Jᵒᵖ, then F.rightOp : C ⥤ Dᵒᵖ preserves colimits
of shape J.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves limits of shape Jᵒᵖ, then F.unop : C ⥤ D preserves colimits
of shape J.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits of shape Jᵒᵖ, then F : C ⥤ D preserves limits
of shape J.
If F.leftOp : Cᵒᵖ ⥤ D preserves colimits of shape Jᵒᵖ, then F : C ⥤ Dᵒᵖ preserves limits
of shape J.
If F.rightOp : C ⥤ Dᵒᵖ preserves colimits of shape Jᵒᵖ, then F : Cᵒᵖ ⥤ D preserves limits
of shape J.
If F.unop : C ⥤ D preserves colimits of shape Jᵒᵖ, then F : Cᵒᵖ ⥤ Dᵒᵖ preserves limits
of shape J.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves limits of shape Jᵒᵖ, then F : C ⥤ D preserves colimits
of shape J.
If F.leftOp : Cᵒᵖ ⥤ D preserves limits of shape Jᵒᵖ, then F : C ⥤ Dᵒᵖ preserves colimits
of shape J.
If F.rightOp : C ⥤ Dᵒᵖ preserves limits of shape Jᵒᵖ, then F : Cᵒᵖ ⥤ D preserves colimits
of shape J.
If F.unop : C ⥤ D preserves limits of shape Jᵒᵖ, then F : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits
of shape J.
If F : C ⥤ D preserves colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves limits.
If F : C ⥤ Dᵒᵖ preserves colimits, then F.leftOp : Cᵒᵖ ⥤ D preserves limits.
If F : Cᵒᵖ ⥤ D preserves colimits, then F.rightOp : C ⥤ Dᵒᵖ preserves limits.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits, then F.unop : C ⥤ D preserves limits.
If F : C ⥤ D preserves limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits.
If F : C ⥤ Dᵒᵖ preserves limits, then F.leftOp : Cᵒᵖ ⥤ D preserves colimits.
If F : Cᵒᵖ ⥤ D preserves limits, then F.rightOp : C ⥤ Dᵒᵖ preserves colimits.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves limits, then F.unop : C ⥤ D preserves colimits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits, then F : C ⥤ D preserves limits.
If F.leftOp : Cᵒᵖ ⥤ D preserves colimits, then F : C ⥤ Dᵒᵖ preserves limits.
If F.rightOp : C ⥤ Dᵒᵖ preserves colimits, then F : Cᵒᵖ ⥤ D preserves limits.
If F.unop : C ⥤ D preserves colimits, then F : Cᵒᵖ ⥤ Dᵒᵖ preserves limits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves limits, then F : C ⥤ D preserves colimits.
If F.leftOp : Cᵒᵖ ⥤ D preserves limits, then F : C ⥤ Dᵒᵖ preserves colimits.
If F.rightOp : C ⥤ Dᵒᵖ preserves limits, then F : Cᵒᵖ ⥤ D preserves colimits.
If F.unop : C ⥤ D preserves limits, then F : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits.
If F : C ⥤ D preserves colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves limits.
If F : C ⥤ Dᵒᵖ preserves colimits, then F.leftOp : Cᵒᵖ ⥤ D preserves limits.
If F : Cᵒᵖ ⥤ D preserves colimits, then F.rightOp : C ⥤ Dᵒᵖ preserves limits.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits, then F.unop : C ⥤ D preserves limits.
If F : C ⥤ D preserves limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits.
Alias of CategoryTheory.Limits.preservesColimits_op.
If F : C ⥤ D preserves limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits.
If F : C ⥤ Dᵒᵖ preserves limits, then F.leftOp : Cᵒᵖ ⥤ D preserves colimits.
If F : Cᵒᵖ ⥤ D preserves limits, then F.rightOp : C ⥤ Dᵒᵖ preserves colimits.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves limits, then F.unop : C ⥤ D preserves colimits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits, then F : C ⥤ D preserves limits.
If F.leftOp : Cᵒᵖ ⥤ D preserves colimits, then F : C ⥤ Dᵒᵖ preserves limits.
If F.rightOp : C ⥤ Dᵒᵖ preserves colimits, then F : Cᵒᵖ ⥤ D preserves limits.
If F.unop : C ⥤ D preserves colimits, then F : Cᵒᵖ ⥤ Dᵒᵖ preserves limits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves limits, then F : C ⥤ D preserves colimits.
If F.leftOp : Cᵒᵖ ⥤ D preserves limits, then F : C ⥤ Dᵒᵖ preserves colimits.
If F.rightOp : C ⥤ Dᵒᵖ preserves limits, then F : Cᵒᵖ ⥤ D preserves colimits.
If F.unop : C ⥤ D preserves limits, then F : Cᵒᵖ ⥤ Dᵒᵖ preserves colimits.
If F : C ⥤ D preserves finite colimits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves finite
limits.
If F : C ⥤ Dᵒᵖ preserves finite colimits, then F.leftOp : Cᵒᵖ ⥤ D preserves finite
limits.
If F : Cᵒᵖ ⥤ D preserves finite colimits, then F.rightOp : C ⥤ Dᵒᵖ preserves finite
limits.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves finite colimits, then F.unop : C ⥤ D preserves finite
limits.
If F : C ⥤ D preserves finite limits, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves finite
colimits.
If F : C ⥤ Dᵒᵖ preserves finite limits, then F.leftOp : Cᵒᵖ ⥤ D preserves finite
colimits.
If F : Cᵒᵖ ⥤ D preserves finite limits, then F.rightOp : C ⥤ Dᵒᵖ preserves finite
colimits.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves finite limits, then F.unop : C ⥤ D preserves finite
colimits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves finite colimits, then F : C ⥤ D preserves finite limits.
If F.leftOp : Cᵒᵖ ⥤ D preserves finite colimits, then F : C ⥤ Dᵒᵖ preserves finite
limits.
If F.rightOp : C ⥤ Dᵒᵖ preserves finite colimits, then F : Cᵒᵖ ⥤ D preserves finite
limits.
If F.unop : C ⥤ D preserves finite colimits, then F : Cᵒᵖ ⥤ Dᵒᵖ preserves finite limits.
If F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves finite limits, then F : C ⥤ D preserves finite colimits.
If F.leftOp : Cᵒᵖ ⥤ D preserves finite limits, then F : C ⥤ Dᵒᵖ preserves finite
colimits.
If F.rightOp : C ⥤ Dᵒᵖ preserves finite limits, then F : Cᵒᵖ ⥤ D preserves finite
colimits.
If F.unop : C ⥤ D preserves finite limits, then F : Cᵒᵖ ⥤ Dᵒᵖ preserves finite colimits.
If F : C ⥤ D preserves finite coproducts, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves finite
products.
If F : C ⥤ Dᵒᵖ preserves finite coproducts, then F.leftOp : Cᵒᵖ ⥤ D preserves finite
products.
If F : Cᵒᵖ ⥤ D preserves finite coproducts, then F.rightOp : C ⥤ Dᵒᵖ preserves finite
products.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves finite coproducts, then F.unop : C ⥤ D preserves finite
products.
If F : C ⥤ D preserves finite products, then F.op : Cᵒᵖ ⥤ Dᵒᵖ preserves finite
coproducts.
If F : C ⥤ Dᵒᵖ preserves finite products, then F.leftOp : Cᵒᵖ ⥤ D preserves finite
coproducts.
If F : Cᵒᵖ ⥤ D preserves finite products, then F.rightOp : C ⥤ Dᵒᵖ preserves finite
coproducts.
If F : Cᵒᵖ ⥤ Dᵒᵖ preserves finite products, then F.unop : C ⥤ D preserves finite
coproducts.