Idempotent complete categories #
In this file, we define the notion of idempotent complete categories (also known as Karoubian categories, or pseudoabelian in the case of preadditive categories).
Main definitions #
IsIdempotentComplete Cexpresses thatCis idempotent complete, i.e. all idempotents inCsplit. Other characterisations of idempotent completeness are given byisIdempotentComplete_iff_hasEqualizer_of_id_and_idempotentandisIdempotentComplete_iff_idempotents_have_kernels.isIdempotentComplete_of_abelianexpresses that abelian categories are idempotent complete.isIdempotentComplete_iff_ofEquivalenceexpresses that if two categoriesCandDare equivalent, thenCis idempotent complete iffDis.isIdempotentComplete_iff_oppositeexpresses thatCᵒᵖis idempotent complete iffCis.
References #
- [Stacks: Karoubian categories] https://stacks.math.columbia.edu/tag/09SF
A category is idempotent complete iff all idempotent endomorphisms p
split as a composition p = e ≫ i with i ≫ e = 𝟙 _
- idempotents_split (X : C) (p : X ⟶ X) : CategoryStruct.comp p p = p → ∃ (Y : C) (i : Y ⟶ X) (e : X ⟶ Y), CategoryStruct.comp i e = CategoryStruct.id Y ∧ CategoryStruct.comp e i = p
A category is idempotent complete iff all idempotent endomorphisms
psplit as a compositionp = e ≫ iwithi ≫ e = 𝟙 _
Instances
A category is idempotent complete iff for all idempotent endomorphisms, the equalizer of the identity and this idempotent exists.
In a preadditive category, when p : X ⟶ X is idempotent,
then 𝟙 X - p is also idempotent.
A preadditive category is pseudoabelian iff all idempotent endomorphisms have a kernel.
An abelian category is idempotent complete.
If C and D are equivalent categories, that C is idempotent complete iff D is.