Documentation

Mathlib.CategoryTheory.FiberedCategory.Fibered

Fibered categories #

This file defines what it means for a functor p : š’³ ā„¤ š’® to be (pre)fibered.

Main definitions #

Implementation #

The constructor of IsPreFibered is called exists_isCartesian'. The reason for the prime is that when wanting to apply this condition, it is recommended to instead use the lemma exists_isCartesian (without the prime), which is more applicable with respect to non-definitional equalities.

References #

Definition of a prefibered category.

See SGA 1 VI.6.1.

  • exists_isCartesian' : āˆ€ {a : š’³} {R : š’®} (f : R āŸ¶ p.obj a), āˆƒ (b : š’³), āˆƒ (Ļ† : b āŸ¶ a), p.IsCartesian f Ļ†
Instances
    theorem CategoryTheory.Functor.IsPreFibered.exists_isCartesian' {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] {p : CategoryTheory.Functor š’³ š’®} [self : p.IsPreFibered] {a : š’³} {R : š’®} (f : R āŸ¶ p.obj a) :
    āˆƒ (b : š’³), āˆƒ (Ļ† : b āŸ¶ a), p.IsCartesian f Ļ†
    theorem CategoryTheory.IsPreFibered.exists_isCartesian {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] (p : CategoryTheory.Functor š’³ š’®) [p.IsPreFibered] {a : š’³} {R : š’®} {S : š’®} (ha : p.obj a = S) (f : R āŸ¶ S) :
    āˆƒ (b : š’³), āˆƒ (Ļ† : b āŸ¶ a), p.IsCartesian f Ļ†
    noncomputable def CategoryTheory.IsPreFibered.pullbackObj {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] {p : CategoryTheory.Functor š’³ š’®} [p.IsPreFibered] {R : š’®} {S : š’®} {a : š’³} (ha : p.obj a = S) (f : R āŸ¶ S) :
    š’³

    Given a fibered category p : š’³ ā„¤ š’«, a morphism f : R āŸ¶ S and an object a lying over S, then pullbackObj is the domain of some choice of a cartesian morphism lying over f with codomain a.

    Equations
    Instances For
      noncomputable def CategoryTheory.IsPreFibered.pullbackMap {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] {p : CategoryTheory.Functor š’³ š’®} [p.IsPreFibered] {R : š’®} {S : š’®} {a : š’³} (ha : p.obj a = S) (f : R āŸ¶ S) :

      Given a fibered category p : š’³ ā„¤ š’«, a morphism f : R āŸ¶ S and an object a lying over S, then pullbackMap is a choice of a cartesian morphism lying over f with codomain a.

      Equations
      Instances For
        instance CategoryTheory.IsPreFibered.pullbackMap.IsCartesian {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] {p : CategoryTheory.Functor š’³ š’®} [p.IsPreFibered] {R : š’®} {S : š’®} {a : š’³} (ha : p.obj a = S) (f : R āŸ¶ S) :
        Equations
        • ā‹Æ = ā‹Æ
        theorem CategoryTheory.IsPreFibered.pullbackObj_proj {š’® : Type uā‚} {š’³ : Type uā‚‚} [CategoryTheory.Category.{vā‚, uā‚} š’®] [CategoryTheory.Category.{vā‚‚, uā‚‚} š’³] {p : CategoryTheory.Functor š’³ š’®} [p.IsPreFibered] {R : š’®} {S : š’®} {a : š’³} (ha : p.obj a = S) (f : R āŸ¶ S) :