Relative Yoneda preserves certain colimits #
In this file we turn the statement yonedaYonedaColimit from
CategoryTheory.Limits.Preserves.Yoneda from a functor F : J ⥤ Cᵒᵖ ⥤ Type v into a statement
about families of presheaves over A, i.e., functors F : J ⥤ Over A.
noncomputable def
CategoryTheory.CostructuredArrow.toOverCompYonedaColimit
{C : Type u}
[Category.{v, u} C]
{J : Type v}
[SmallCategory J]
{A : Functor Cᵒᵖ (Type v)}
(F : Functor J (Over A))
:
Naturally in X, we have Hom(YX, colim_i Fi) ≅ colim_i Hom(YX, Fi), where Y is the
"Yoneda embedding" CostructuredArrow.toOver yoneda A. This is a relative version of
yonedaYonedaColimit.
Equations
- One or more equations did not get rendered due to their size.