The category of "pairwise intersections". #
Given ι : Type v, we build the diagram category Pairwise ι
with objects single i and pair i j, for i j : ι,
whose only non-identity morphisms are
left : pair i j ⟶ single i and right : pair i j ⟶ single j.
We use this later in describing (one formulation of) the sheaf condition.
Given any function U : ι → α, where α is some complete lattice (e.g. (Opens X)ᵒᵖ),
we produce a functor Pairwise ι ⥤ α in the obvious way,
and show that iSup U provides a colimit cocone over this functor.
An inductive type representing either a single term of a type ι, or a pair of terms.
We use this as the objects of a category to describe the sheaf condition.
Instances For
Equations
Morphisms in the category Pairwise ι. The only non-identity morphisms are
left i j : single i ⟶ pair i j and right i j : single j ⟶ pair i j.
- id_single {ι : Type v} (i : ι) : (single i).Hom (single i)
- id_pair {ι : Type v} (i j : ι) : (pair i j).Hom (pair i j)
- left {ι : Type v} (i j : ι) : (pair i j).Hom (single i)
- right {ι : Type v} (i j : ι) : (pair i j).Hom (single j)
Instances For
Composition of morphisms in Pairwise ι.
Equations
- CategoryTheory.Pairwise.comp (CategoryTheory.Pairwise.Hom.id_single i) x✝ = x✝
- CategoryTheory.Pairwise.comp (CategoryTheory.Pairwise.Hom.id_pair i j) x✝ = x✝
- CategoryTheory.Pairwise.comp (CategoryTheory.Pairwise.Hom.left i j) (CategoryTheory.Pairwise.Hom.id_single i) = CategoryTheory.Pairwise.Hom.left i j
- CategoryTheory.Pairwise.comp (CategoryTheory.Pairwise.Hom.right i j) (CategoryTheory.Pairwise.Hom.id_single j) = CategoryTheory.Pairwise.Hom.right i j
Instances For
Equations
- CategoryTheory.Pairwise.instCategoryStruct = { Hom := CategoryTheory.Pairwise.Hom, id := CategoryTheory.Pairwise.id, comp := @CategoryTheory.Pairwise.comp ι }
A helper tactic for aesop_cat and Pairwise.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- CategoryTheory.Pairwise.instCategory = { toCategoryStruct := CategoryTheory.Pairwise.instCategoryStruct, id_comp := ⋯, comp_id := ⋯, assoc := ⋯ }
Auxiliary definition for diagram.
Equations
- CategoryTheory.Pairwise.diagramObj U (CategoryTheory.Pairwise.single i) = U i
- CategoryTheory.Pairwise.diagramObj U (CategoryTheory.Pairwise.pair i j) = U i ⊓ U j
Instances For
Auxiliary definition for diagram.
Equations
- CategoryTheory.Pairwise.diagramMap U (CategoryTheory.Pairwise.Hom.id_single i) = CategoryTheory.CategoryStruct.id (CategoryTheory.Pairwise.diagramObj U (CategoryTheory.Pairwise.single i))
- CategoryTheory.Pairwise.diagramMap U (CategoryTheory.Pairwise.Hom.id_pair i j) = CategoryTheory.CategoryStruct.id (CategoryTheory.Pairwise.diagramObj U (CategoryTheory.Pairwise.pair i j))
- CategoryTheory.Pairwise.diagramMap U (CategoryTheory.Pairwise.Hom.left i j) = CategoryTheory.homOfLE ⋯
- CategoryTheory.Pairwise.diagramMap U (CategoryTheory.Pairwise.Hom.right i j) = CategoryTheory.homOfLE ⋯
Instances For
Given a function U : ι → α for [SemilatticeInf α], we obtain a functor Pairwise ι ⥤ α,
sending single i to U i and pair i j to U i ⊓ U j,
and the morphisms to the obvious inequalities.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Auxiliary definition for cocone.
Equations
Instances For
Given a function U : ι → α for [CompleteLattice α],
iSup U provides a cocone over diagram U.
Equations
- CategoryTheory.Pairwise.cocone U = { pt := iSup U, ι := { app := CategoryTheory.Pairwise.coconeιApp U, naturality := ⋯ } }
Instances For
Given a function U : ι → α for [CompleteLattice α],
iInf U provides a limit cone over diagram U.
Equations
- CategoryTheory.Pairwise.coconeIsColimit U = { desc := fun (s : CategoryTheory.Limits.Cocone (CategoryTheory.Pairwise.diagram U)) => CategoryTheory.homOfLE ⋯, fac := ⋯, uniq := ⋯ }