Category of categories #
This file contains the definition of the category Cat
of all categories.
In this category objects are categories and
morphisms are functors between these categories.
Implementation notes #
Though Cat
is not a concrete category, we use bundled
to define
its carrier type.
Category of categories.
Instances For
Equations
- CategoryTheory.Cat.instInhabited = { default := { α := Type ?u.3, str := CategoryTheory.types } }
Equations
- CategoryTheory.Cat.instCoeSortType = { coe := CategoryTheory.Bundled.α }
Equations
- C.str = C.str
Bicategory structure on Cat
Equations
- One or more equations did not get rendered due to their size.
Cat
is a strict bicategory.
Equations
Category structure on Cat
@[simp]
theorem
CategoryTheory.Cat.id_obj
{C : CategoryTheory.Cat}
(X : ↑C)
:
(CategoryTheory.CategoryStruct.id C).obj X = X
@[simp]
theorem
CategoryTheory.Cat.id_map
{C : CategoryTheory.Cat}
{X : ↑C}
{Y : ↑C}
(f : X ⟶ Y)
:
(CategoryTheory.CategoryStruct.id C).map f = f
@[simp]
theorem
CategoryTheory.Cat.comp_obj
{C : CategoryTheory.Cat}
{D : CategoryTheory.Cat}
{E : CategoryTheory.Cat}
(F : C ⟶ D)
(G : D ⟶ E)
(X : ↑C)
:
(CategoryTheory.CategoryStruct.comp F G).obj X = G.obj (F.obj X)
@[simp]
theorem
CategoryTheory.Cat.comp_map
{C : CategoryTheory.Cat}
{D : CategoryTheory.Cat}
{E : CategoryTheory.Cat}
(F : C ⟶ D)
(G : D ⟶ E)
{X : ↑C}
{Y : ↑C}
(f : X ⟶ Y)
:
(CategoryTheory.CategoryStruct.comp F G).map f = G.map (F.map f)
@[simp]
theorem
CategoryTheory.Cat.id_app
{C : CategoryTheory.Cat}
{D : CategoryTheory.Cat}
(F : C ⟶ D)
(X : ↑C)
:
(CategoryTheory.CategoryStruct.id F).app X = CategoryTheory.CategoryStruct.id (F.obj X)
@[simp]
theorem
CategoryTheory.Cat.comp_app
{C : CategoryTheory.Cat}
{D : CategoryTheory.Cat}
{F : C ⟶ D}
{G : C ⟶ D}
{H : C ⟶ D}
(α : F ⟶ G)
(β : G ⟶ H)
(X : ↑C)
:
(CategoryTheory.CategoryStruct.comp α β).app X = CategoryTheory.CategoryStruct.comp (α.app X) (β.app X)
@[simp]
theorem
CategoryTheory.Cat.whiskerLeft_app
{C : CategoryTheory.Cat}
{D : CategoryTheory.Cat}
{E : CategoryTheory.Cat}
(F : C ⟶ D)
{G : D ⟶ E}
{H : D ⟶ E}
(η : G ⟶ H)
(X : ↑C)
:
(CategoryTheory.Bicategory.whiskerLeft F η).app X = η.app (F.obj X)
@[simp]
theorem
CategoryTheory.Cat.whiskerRight_app
{C : CategoryTheory.Cat}
{D : CategoryTheory.Cat}
{E : CategoryTheory.Cat}
{F : C ⟶ D}
{G : C ⟶ D}
(H : D ⟶ E)
(η : F ⟶ G)
(X : ↑C)
:
(CategoryTheory.Bicategory.whiskerRight η H).app X = H.map (η.app X)
@[simp]
theorem
CategoryTheory.Cat.eqToHom_app
{C : CategoryTheory.Cat}
{D : CategoryTheory.Cat}
(F : C ⟶ D)
(G : C ⟶ D)
(h : F = G)
(X : ↑C)
:
(CategoryTheory.eqToHom h).app X = CategoryTheory.eqToHom ⋯
theorem
CategoryTheory.Cat.leftUnitor_hom_app
{B : CategoryTheory.Cat}
{C : CategoryTheory.Cat}
(F : B ⟶ C)
(X : ↑B)
:
(CategoryTheory.Bicategory.leftUnitor F).hom.app X = CategoryTheory.eqToHom ⋯
theorem
CategoryTheory.Cat.leftUnitor_inv_app
{B : CategoryTheory.Cat}
{C : CategoryTheory.Cat}
(F : B ⟶ C)
(X : ↑B)
:
(CategoryTheory.Bicategory.leftUnitor F).inv.app X = CategoryTheory.eqToHom ⋯
theorem
CategoryTheory.Cat.rightUnitor_hom_app
{B : CategoryTheory.Cat}
{C : CategoryTheory.Cat}
(F : B ⟶ C)
(X : ↑B)
:
(CategoryTheory.Bicategory.rightUnitor F).hom.app X = CategoryTheory.eqToHom ⋯
theorem
CategoryTheory.Cat.rightUnitor_inv_app
{B : CategoryTheory.Cat}
{C : CategoryTheory.Cat}
(F : B ⟶ C)
(X : ↑B)
:
(CategoryTheory.Bicategory.rightUnitor F).inv.app X = CategoryTheory.eqToHom ⋯
theorem
CategoryTheory.Cat.associator_hom_app
{B : CategoryTheory.Cat}
{C : CategoryTheory.Cat}
{D : CategoryTheory.Cat}
{E : CategoryTheory.Cat}
(F : B ⟶ C)
(G : C ⟶ D)
(H : D ⟶ E)
(X : ↑B)
:
(CategoryTheory.Bicategory.associator F G H).hom.app X = CategoryTheory.eqToHom ⋯
theorem
CategoryTheory.Cat.associator_inv_app
{B : CategoryTheory.Cat}
{C : CategoryTheory.Cat}
{D : CategoryTheory.Cat}
{E : CategoryTheory.Cat}
(F : B ⟶ C)
(G : C ⟶ D)
(H : D ⟶ E)
(X : ↑B)
:
(CategoryTheory.Bicategory.associator F G H).inv.app X = CategoryTheory.eqToHom ⋯
Functor that gets the set of objects of a category. It is not
called forget
, because it is not a faithful functor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- X.instCategoryObjObjects = inferInstance
def
CategoryTheory.Cat.equivOfIso
{C : CategoryTheory.Cat}
{D : CategoryTheory.Cat}
(γ : C ≅ D)
:
↑C ≌ ↑D
Any isomorphism in Cat
induces an equivalence of the underlying categories.
Equations
- CategoryTheory.Cat.equivOfIso γ = { functor := γ.hom, inverse := γ.inv, unitIso := CategoryTheory.eqToIso ⋯, counitIso := CategoryTheory.eqToIso ⋯, functor_unitIso_comp := ⋯ }
Instances For
@[simp]
@[simp]
theorem
CategoryTheory.typeToCat_map
{X : Type u}
{Y : Type u}
(f : X ⟶ Y)
:
CategoryTheory.typeToCat.map f = id (CategoryTheory.Discrete.functor (CategoryTheory.Discrete.mk ∘ f))
Embedding Type
into Cat
as discrete categories.
This ought to be modelled as a 2-functor!
Equations
- One or more equations did not get rendered due to their size.