Documentation

Mathlib.Analysis.SpecialFunctions.Log.ENNRealLogExp

Properties of the extended logarithm and exponential #

We prove that log and exp define order isomorphisms between ℝ≥0∞ and EReal.

Main Definitions #

Main Results #

Tags #

ENNReal, EReal, logarithm, exponential

@[simp]
theorem EReal.log_exp (x : EReal) :
x.exp.log = x
@[simp]
theorem ENNReal.exp_log (x : ENNReal) :
x.log.exp = x
theorem EReal.exp_nmul (x : EReal) (n : ) :
(n * x).exp = x.exp ^ n
theorem EReal.exp_mul (x : EReal) (y : ) :
(x * y).exp = x.exp ^ y

ENNReal.log and its inverse EReal.exp are an order isomorphism between ℝ≥0∞ and EReal.

Equations
@[simp]
theorem ENNReal.logOrderIso_apply (x : ENNReal) :
ENNReal.logOrderIso x = x.log
noncomputable def EReal.expOrderIso :

EReal.exp and its inverse ENNReal.log are an order isomorphism between EReal and ℝ≥0∞.

Equations
@[simp]
theorem EReal.expOrderIso_apply (x : EReal) :
EReal.expOrderIso x = x.exp

log as a homeomorphism.

Equations
@[simp]
theorem ENNReal.logHomeomorph_apply (x : ENNReal) :
ENNReal.logHomeomorph x = x.log

exp as a homeomorphism.

Equations
@[simp]
theorem EReal.expHomeomorph_apply (x : EReal) :
EReal.expHomeomorph x = x.exp
theorem Measurable.ennreal_log {α : Type u_1} :
∀ {x : MeasurableSpace α} {f : αENNReal}, Measurable fMeasurable fun (x : α) => (f x).log
theorem Measurable.ereal_exp {α : Type u_1} :
∀ {x : MeasurableSpace α} {f : αEReal}, Measurable fMeasurable fun (x : α) => (f x).exp