Binomial coefficients and factorial variants #
This file proves asymptotic theorems for binomial coefficients and factorial variants.
Main statements #
isEquivalent_descFactorialis the proof thatn.descFactorial k ~ n^kasn → ∞.isEquivalent_chooseis the proof thatn.choose k ~ n^k / k!asn → ∞.isTheta_chooseis the proof thatn.choose k = Θ(n^k)asn → ∞.
theorem
isEquivalent_descFactorial
(k : ℕ)
:
Asymptotics.IsEquivalent Filter.atTop (fun (n : ℕ) => ↑(n.descFactorial k)) fun (n : ℕ) => ↑n ^ k
n.descFactorial k is asymptotically equivalent to n^k.
theorem
isEquivalent_choose
(k : ℕ)
:
Asymptotics.IsEquivalent Filter.atTop (fun (n : ℕ) => ↑(n.choose k)) fun (n : ℕ) => ↑n ^ k / ↑k.factorial
n.choose k is asymptotically equivalent to n^k / k!.
n.choose k is big-theta n^k.