smoothingSeminorm #
In this file, we prove [BGR, Proposition 1.3.2/1][bosch-guntzer-remmert] : if μ is a
nonarchimedean seminorm on a commutative ring R, then iInf (fun (n : PNat), (μ(x ^ (n : ℕ))) ^ (1 / (n : ℝ)))is a power-multiplicative nonarchimedean seminorm onR`.
Main Definitions #
smoothingSeminormSeq: theℝ-valued sequence sendingnto((f( (x ^ n)) ^ (1 / n : ℝ).smoothingFun: the iInf of the sequencen ↦ f(x ^ (n : ℕ))) ^ (1 / (n : ℝ).smoothingSeminorm: ifμ 1 ≤ 1andμis nonarchimedean, thensmoothingFunis a ring seminorm.
Main Results #
tendsto_smoothingFun_of_map_one_le_one: ifμ 1 ≤ 1, thensmoothingFun μ xis the limit ofsmoothingSeminormSeq μ xasntends to infinity.isNonarchimedean_smoothingFun: ifμ 1 ≤ 1andμis nonarchimedean, thensmoothingFunis nonarchimedean.isPowMul_smoothingFun: ifμ 1 ≤ 1andμis nonarchimedean, thensmoothingFun μis power-multiplicative.
References #
- [S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis][bosch-guntzer-remmert]
Tags #
smoothingSeminorm, seminorm, nonarchimedean
The ℝ-valued sequence sending n to (μ (x ^ n))^(1/n : ℝ).
Equations
- smoothingSeminormSeq μ x n = μ (x ^ n) ^ (1 / ↑n)
Instances For
0 is a lower bound of smoothingSeminormSeq.
smoothingSeminormSeq is bounded below (by zero).
The iInf of the sequence n ↦ μ(x ^ (n : ℕ)))^(1 / (n : ℝ).
Instances For
If μ x = 0, then smoothingFun μ x is the limit of smoothingSeminormSeq μ x.
If μ 1 ≤ 1 and μ x ≠ 0, then smoothingFun μ x is the limit of
smoothingSeminormSeq μ x.
If μ 1 ≤ 1, then smoothingFun μ x is the limit of smoothingSeminormSeq μ x
as n tends to infinity.
If μ 1 ≤ 1, then smoothingFun μ x is nonnegative.
If μ 1 ≤ 1, then smoothingFun μ 1 ≤ 1.
For any x and any positive n, smoothingFun μ x ≤ μ (x ^ (n : ℕ))^(1 / n : ℝ).
For all x : R, smoothingFun μ x ≤ μ x.
If μ 1 ≤ 1 and μ is nonarchimedean, then smoothingFun μ is nonarchimedean.
If μ 1 ≤ 1 and μ is nonarchimedean, then smoothingFun is a ring seminorm.
Equations
- smoothingSeminorm μ hμ1 hna = { toFun := smoothingFun μ, map_zero' := ⋯, add_le' := ⋯, neg' := ⋯, mul_le' := ⋯ }
Instances For
If μ 1 ≤ 1 and μ is nonarchimedean, then smoothingSeminorm μ 1 ≤ 1.
If μ 1 ≤ 1 and μ is nonarchimedean, then smoothingFun μ is
power-multiplicative.
If μ 1 ≤ 1 and ∀ (1 ≤ n), μ (x ^ n) = μ x ^ n, then smoothingFun μ x = μ x.
If μ 1 ≤ 1 and ∀ y : R, μ (x * y) = μ x * μ y, then smoothingFun μ x = μ x.
If μ 1 ≤ 1, μ is nonarchimedean, and ∀ y : R, μ (x * y) = μ x * μ y, then
smoothingSeminorm μ x = μ x.
If μ 1 ≤ 1, and x is multiplicative for μ, then it is multiplicative for
smoothingFun.
If μ 1 ≤ 1, μ is nonarchimedean, and x is multiplicative for μ, then x is
multiplicative for smoothingSeminorm.