SeminormFromConst #
In this file, we prove [BGR, Proposition 1.3.2/2][bosch-guntzer-remmert] : starting from a
power-multiplicative seminorm on a commutative ring R and a nonzero c : R, we create a new
power-multiplicative seminorm for which c is multiplicative.
Main Definitions #
seminormFromConst': the real-valued function sendingx ∈ Rto the limit of(f (x * c^n))/((f c)^n).seminormFromConst: the functionseminormFromConst'as aRingSeminormonR.
Main Results #
seminormFromConst_isNonarchimedean: the functionseminormFromConst' hf1 hc hpmis nonarchimedean when f is nonarchimedean.seminormFromConst_isPowMul: the functionseminormFromConst' hf1 hc hpmis power-multiplicative.seminormFromConst_const_mul: for everyx : R,seminormFromConst' hf1 hc hpm (c * x)equals the productseminormFromConst' hf1 hc hpm c * SeminormFromConst' hf1 hc hpm x.
References #
- [S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis][bosch-guntzer-remmert]
Tags #
SeminormFromConst, Seminorm, Nonarchimedean
For a ring seminorm f on R and c ∈ R, the sequence given by (f (x * c^n))/((f c)^n).
Instances For
The terms in the sequence seminormFromConst_seq c f x are nonnegative.
The image of seminormFromConst_seq c f x is bounded below by zero.
seminormFromConst_seq c f 0 is the constant sequence zero.
If 1 ≤ n, then seminormFromConst_seq c f 1 n = 1.
seminormFromConst_seq c f x is antitone.
The real-valued function sending x ∈ R to the limit of (f (x * c^n))/((f c)^n).
Equations
- seminormFromConst' hf1 hc hpm x = ⋯.choose
Instances For
We prove that seminormFromConst' hf1 hc hpm x is the limit of the sequence
seminormFromConst_seq c f x as n tends to infinity.
seminormFromConst' hf1 hc hpm 1 = 1.
The function seminormFromConst is a RingSeminorm on R.
Equations
- seminormFromConst hf1 hc hpm = { toFun := seminormFromConst' hf1 hc hpm, map_zero' := ⋯, add_le' := ⋯, neg' := ⋯, mul_le' := ⋯ }
Instances For
seminormFromConst' hf1 hc hpm 1 ≤ 1.
The function seminormFromConst' hf1 hc hpm is nonarchimedean.
The function seminormFromConst' hf1 hc hpm is power-multiplicative.
The function seminormFromConst' hf1 hc hpm is bounded above by f.
If x : R is multiplicative for f, then seminormFromConst' hf1 hc hpm x = f x.
If x : R is multiplicative for f, then it is multiplicative for
seminormFromConst' hf1 hc hpm.
seminormFromConst' hf1 hc hpm c = f c.
For every x : R, seminormFromConst' hf1 hc hpm (c * x) equals the product
seminormFromConst' hf1 hc hpm c * SeminormFromConst' hf1 hc hpm x.
If K is a field, the function seminormFromConst is a RingNorm on K.
Equations
- normFromConst hg1 hg_k hg_pm = (seminormFromConst hg1 hg_k hg_pm).toRingNorm ⋯