Submodules of normed groups #
instance
Submodule.seminormedAddCommGroup
{𝕜 : Type u_1}
{E : Type u_2}
[Ring 𝕜]
[SeminormedAddCommGroup E]
[Module 𝕜 E]
(s : Submodule 𝕜 E)
:
SeminormedAddCommGroup { x : E // x ∈ s }
A submodule of a seminormed group is also a seminormed group, with the restriction of the norm.
Equations
- s.seminormedAddCommGroup = SeminormedAddCommGroup.induced { x : E // x ∈ s } E s.subtype.toAddMonoidHom
theorem
Submodule.norm_coe
{𝕜 : Type u_1}
{E : Type u_2}
[Ring 𝕜]
[SeminormedAddCommGroup E]
[Module 𝕜 E]
{s : Submodule 𝕜 E}
(x : { x : E // x ∈ s })
:
If x
is an element of a submodule s
of a normed group E
, its norm in E
is equal to its
norm in s
.
This is a reversed version of the simp
lemma Submodule.coe_norm
for use by norm_cast
.
instance
Submodule.normedAddCommGroup
{𝕜 : Type u_1}
{E : Type u_2}
[Ring 𝕜]
[NormedAddCommGroup E]
[Module 𝕜 E]
(s : Submodule 𝕜 E)
:
NormedAddCommGroup { x : E // x ∈ s }
A submodule of a normed group is also a normed group, with the restriction of the norm.
Equations
- s.normedAddCommGroup = NormedAddCommGroup.mk ⋯