Canonical tensors in real inner product spaces #
Given an InnerProductSpace ℝ E, this file defines two canonical tensors.
InnerProductSpace.canonicalContravariantTensor E : E ⊗[ℝ] E →ₗ[ℝ] ℝ. This is the element corresponding to the inner product.If
Eis finite-dimensional, thenE ⊗[ℝ] Eis canonically isomorphic to its dual. Accordingly, there exists an elementInnerProductSpace.canonicalCovariantTensor E : E ⊗[ℝ] Ethat corresponds toInnerProductSpace.canonicalContravariantTensor Eunder this identification.
The theorem canonicalCovariantTensor_eq_sum shows that
InnerProductSpace.canonicalCovariantTensor E can be computed from any orthonormal basis v as
∑ i, (v i) ⊗ₜ[ℝ] (v i).
The canonical contravariant tensor corresponding to the inner product
Instances For
The canonical covariant tensor corresponding to InnerProductSpace.canonicalContravariantTensor
under the identification of E with its dual.
Equations
- InnerProductSpace.canonicalCovariantTensor E = ∑ i : Fin (Module.finrank ℝ E), (stdOrthonormalBasis ℝ E) i ⊗ₜ[ℝ] (stdOrthonormalBasis ℝ E) i
Instances For
Representation of the canonical covariant tensor in terms of an orthonormal basis.