Vertex operators #
In this file we introduce vertex operators as linear maps to Laurent series.
Definitions #
VertexOperatoris anR-linear map from anR-moduleVtoLaurentSeries V.VertexOperator.ncoeffis the coefficient of a vertex operator under normalized indexing.
TODO #
HasseDerivative: A divided-power derivative.Locality: A weak form of commutativity.Residue products: A family of products onVertexOperator R Vparametrized by integers.
References #
- [G. Mason, Vertex rings and Pierce bundles][mason2017]
- [A. Matsuo, K. Nagatomo, On axioms for a vertex algebra and locality of quantum fields][matsuo1997]
@[reducible, inline]
abbrev
VertexOperator
(R : Type u_3)
(V : Type u_4)
[CommRing R]
[AddCommGroup V]
[Module R V]
:
Type u_4
A vertex operator over a commutative ring R is an R-linear map from an R-module V to
Laurent series with coefficients in V. We write this as a specialization of the heterogeneous
case.
Equations
- VertexOperator R V = HVertexOperator ℤ R V V
Instances For
theorem
VertexOperator.ext
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A B : VertexOperator R V)
(h : ∀ (v : V), A v = B v)
:
theorem
VertexOperator.ext_iff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
{A B : VertexOperator R V}
:
def
VertexOperator.ncoeff
{V : Type u_2}
{R : Type u_3}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
:
Module.End R V
The coefficient of a vertex operator under normalized indexing.
Equations
- A.ncoeff n = HVertexOperator.coeff A (-n - 1)
Instances For
In the literature, the nth normalized coefficient of a vertex operator A is written as
either Aₙ or A(n).
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
VertexOperator.coeff_eq_ncoeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
:
@[simp]
theorem
VertexOperator.ncoeff_add
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A B : VertexOperator R V)
(n : ℤ)
:
@[simp]
theorem
VertexOperator.ncoeff_smul
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(r : R)
(n : ℤ)
:
theorem
VertexOperator.ncoeff_eq_zero_of_lt_order
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
(x : V)
(h : -n - 1 < ((HahnModule.of R).symm (A x)).order)
:
theorem
VertexOperator.coeff_eq_zero_of_lt_order
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(A : VertexOperator R V)
(n : ℤ)
(x : V)
(h : n < ((HahnModule.of R).symm (A x)).order)
:
noncomputable def
VertexOperator.of_coeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(f : ℤ → Module.End R V)
(hf : ∀ (x : V), ∃ (n : ℤ), ∀ m < n, (f m) x = 0)
:
VertexOperator R V
Given an endomorphism-valued function on integers satisfying a pointwise bounded-pole condition, we produce a vertex operator.
Equations
Instances For
@[simp]
theorem
VertexOperator.of_coeff_apply_coeff
{R : Type u_1}
{V : Type u_2}
[CommRing R]
[AddCommGroup V]
[Module R V]
(f : ℤ → Module.End R V)
(hf : ∀ (x : V), ∃ (n : ℤ), ∀ m < n, (f m) x = 0)
(x : V)
(n : ℤ)
: