Documentation

Mathlib.Algebra.Star.CentroidHom

Centroid homomorphisms on Star Rings #

When a (non unital, non-associative) semi-ring is equipped with an involutive automorphism the center of the centroid becomes a star ring in a natural way and the natural mapping of the centre of the semi-ring into the centre of the centroid becomes a *-homomorphism.

Tags #

centroid

Equations
  • CentroidHom.instStar = { star := fun (f : CentroidHom α) => { toFun := fun (a : α) => star (f (star a)), map_zero' := , map_add' := , map_mul_left' := , map_mul_right' := } }
@[simp]
theorem CentroidHom.star_apply {α : Type u_1} [NonUnitalNonAssocSemiring α] [StarRing α] (f : CentroidHom α) (a : α) :
(star f) a = star (f (star a))
Equations
Equations
Equations
Equations
  • CentroidHom.instStarRingSubtypeMemSubsemiringCenter = StarRing.mk

The canonical *-homomorphism embedding the center of CentroidHom α into CentroidHom α.

Equations
Instances For
    theorem CentroidHom.star_centerToCentroidCenter {α : Type u_1} [NonUnitalNonAssocSemiring α] [StarRing α] (z : { x : α // x NonUnitalStarSubsemiring.center α }) :
    star (CentroidHom.centerToCentroidCenter z) = CentroidHom.centerToCentroidCenter (star z)

    The canonical *-homomorphism from the center of a non-unital, non-associative *-semiring into the center of its centroid.

    Equations
    • CentroidHom.starCenterToCentroidCenter = { toNonUnitalRingHom := CentroidHom.centerToCentroidCenter, map_star' := }
    Instances For

      The canonical homomorphism from the center into the centroid

      Equations
      • CentroidHom.starCenterToCentroid = CentroidHom.centerStarEmbedding.comp CentroidHom.starCenterToCentroidCenter
      Instances For
        theorem CentroidHom.starCenterToCentroid_apply {α : Type u_1} [NonUnitalNonAssocSemiring α] [StarRing α] (z : { x : α // x NonUnitalStarSubsemiring.center α }) (a : α) :
        (CentroidHom.starCenterToCentroid z) a = z * a
        @[reducible]

        Let α be a star ring with commutative centroid. Then the centroid is a star ring.

        Equations
        Instances For

          The canonical isomorphism from the center of a (non-associative) semiring onto its centroid.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CentroidHom.starCenterIsoCentroid_apply {α : Type u_1} [NonAssocSemiring α] [StarRing α] (a : { x : α // x NonUnitalStarSubsemiring.center α }) :
            CentroidHom.starCenterIsoCentroid a = CentroidHom.starCenterToCentroid a
            @[simp]
            theorem CentroidHom.starCenterIsoCentroid_symm_apply_coe {α : Type u_1} [NonAssocSemiring α] [StarRing α] (T : CentroidHom α) :
            (CentroidHom.starCenterIsoCentroid.symm T) = T 1