Subrings of ordered rings #
We study subrings of ordered rings and prove their basic properties.
Main definitions and results #
Subring.orderedSubtype
: the inclusionS → R
of a subring as an ordered ring homomorphism- various ordered instances: a subring of an
OrderedRing
,OrderedCommRing
,LinearOrderedRing
,toLinearOrderedCommRing
is again an ordering ring
@[instance 75]
instance
SubringClass.toOrderedRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[OrderedRing R]
[SubringClass S R]
:
OrderedRing { x : R // x ∈ s }
A subring of an OrderedRing
is an OrderedRing
.
Equations
- SubringClass.toOrderedRing s = Function.Injective.orderedRing Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[instance 75]
instance
SubringClass.toOrderedCommRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[OrderedCommRing R]
[SubringClass S R]
:
OrderedCommRing { x : R // x ∈ s }
A subring of an OrderedCommRing
is an OrderedCommRing
.
Equations
- SubringClass.toOrderedCommRing s = Function.Injective.orderedCommRing Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[instance 75]
instance
SubringClass.toLinearOrderedRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[LinearOrderedRing R]
[SubringClass S R]
:
LinearOrderedRing { x : R // x ∈ s }
A subring of a LinearOrderedRing
is a LinearOrderedRing
.
Equations
- SubringClass.toLinearOrderedRing s = Function.Injective.linearOrderedRing Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
@[instance 75]
instance
SubringClass.toLinearOrderedCommRing
{R : Type u_1}
{S : Type u_2}
[SetLike S R]
(s : S)
[LinearOrderedCommRing R]
[SubringClass S R]
:
LinearOrderedCommRing { x : R // x ∈ s }
A subring of a LinearOrderedCommRing
is a LinearOrderedCommRing
.
Equations
- SubringClass.toLinearOrderedCommRing s = Function.Injective.linearOrderedCommRing Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
Subring.toOrderedRing
{R : Type u_1}
[OrderedRing R]
(s : Subring R)
:
OrderedRing { x : R // x ∈ s }
A subring of an OrderedRing
is an OrderedRing
.
Equations
- s.toOrderedRing = SubringClass.toOrderedRing s
instance
Subring.toOrderedCommRing
{R : Type u_1}
[OrderedCommRing R]
(s : Subring R)
:
OrderedCommRing { x : R // x ∈ s }
A subring of an OrderedCommRing
is an OrderedCommRing
.
Equations
- s.toOrderedCommRing = SubringClass.toOrderedCommRing s
instance
Subring.toLinearOrderedRing
{R : Type u_1}
[LinearOrderedRing R]
(s : Subring R)
:
LinearOrderedRing { x : R // x ∈ s }
A subring of a LinearOrderedRing
is a LinearOrderedRing
.
Equations
- s.toLinearOrderedRing = SubringClass.toLinearOrderedRing s
instance
Subring.toLinearOrderedCommRing
{R : Type u_1}
[LinearOrderedCommRing R]
(s : Subring R)
:
LinearOrderedCommRing { x : R // x ∈ s }
A subring of a LinearOrderedCommRing
is a LinearOrderedCommRing
.
Equations
- s.toLinearOrderedCommRing = SubringClass.toLinearOrderedCommRing s
The inclusion S → R
of a subring, as an ordered ring homomorphism.
Equations
- s.orderedSubtype = { toRingHom := s.subtype, monotone' := ⋯ }
Instances For
theorem
Subring.orderedSubtype_coe
{R : Type u_2}
[OrderedRing R]
(s : Subring R)
:
↑s.orderedSubtype = s.subtype