Algebraic operations on upper/lower sets #
Upper/lower sets are preserved under pointwise algebraic operations in ordered groups.
theorem
IsUpperSet.vadd_subset
{α : Type u_1}
[OrderedAddCommMonoid α]
{s : Set α}
{x : α}
(hs : IsUpperSet s)
(hx : 0 ≤ x)
:
theorem
IsUpperSet.smul_subset
{α : Type u_1}
[OrderedCommMonoid α]
{s : Set α}
{x : α}
(hs : IsUpperSet s)
(hx : 1 ≤ x)
:
theorem
IsLowerSet.vadd_subset
{α : Type u_1}
[OrderedAddCommMonoid α]
{s : Set α}
{x : α}
(hs : IsLowerSet s)
(hx : x ≤ 0)
:
theorem
IsLowerSet.smul_subset
{α : Type u_1}
[OrderedCommMonoid α]
{s : Set α}
{x : α}
(hs : IsLowerSet s)
(hx : x ≤ 1)
:
theorem
IsUpperSet.vadd
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
{a : α}
(hs : IsUpperSet s)
:
IsUpperSet (a +ᵥ s)
theorem
IsUpperSet.smul
{α : Type u_1}
[OrderedCommGroup α]
{s : Set α}
{a : α}
(hs : IsUpperSet s)
:
IsUpperSet (a • s)
theorem
IsLowerSet.vadd
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
{a : α}
(hs : IsLowerSet s)
:
IsLowerSet (a +ᵥ s)
theorem
IsLowerSet.smul
{α : Type u_1}
[OrderedCommGroup α]
{s : Set α}
{a : α}
(hs : IsLowerSet s)
:
IsLowerSet (a • s)
theorem
Set.OrdConnected.vadd
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
{a : α}
(hs : s.OrdConnected)
:
(a +ᵥ s).OrdConnected
theorem
Set.OrdConnected.smul
{α : Type u_1}
[OrderedCommGroup α]
{s : Set α}
{a : α}
(hs : s.OrdConnected)
:
(a • s).OrdConnected
theorem
IsUpperSet.add_left
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
{t : Set α}
(ht : IsUpperSet t)
:
IsUpperSet (s + t)
theorem
IsUpperSet.mul_left
{α : Type u_1}
[OrderedCommGroup α]
{s : Set α}
{t : Set α}
(ht : IsUpperSet t)
:
IsUpperSet (s * t)
theorem
IsUpperSet.add_right
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
{t : Set α}
(hs : IsUpperSet s)
:
IsUpperSet (s + t)
theorem
IsUpperSet.mul_right
{α : Type u_1}
[OrderedCommGroup α]
{s : Set α}
{t : Set α}
(hs : IsUpperSet s)
:
IsUpperSet (s * t)
theorem
IsLowerSet.add_left
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
{t : Set α}
(ht : IsLowerSet t)
:
IsLowerSet (s + t)
theorem
IsLowerSet.mul_left
{α : Type u_1}
[OrderedCommGroup α]
{s : Set α}
{t : Set α}
(ht : IsLowerSet t)
:
IsLowerSet (s * t)
theorem
IsLowerSet.add_right
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
{t : Set α}
(hs : IsLowerSet s)
:
IsLowerSet (s + t)
theorem
IsLowerSet.mul_right
{α : Type u_1}
[OrderedCommGroup α]
{s : Set α}
{t : Set α}
(hs : IsLowerSet s)
:
IsLowerSet (s * t)
theorem
IsUpperSet.neg
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
(hs : IsUpperSet s)
:
IsLowerSet (-s)
theorem
IsLowerSet.neg
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
(hs : IsLowerSet s)
:
IsUpperSet (-s)
theorem
IsUpperSet.sub_left
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
{t : Set α}
(ht : IsUpperSet t)
:
IsLowerSet (s - t)
theorem
IsUpperSet.div_left
{α : Type u_1}
[OrderedCommGroup α]
{s : Set α}
{t : Set α}
(ht : IsUpperSet t)
:
IsLowerSet (s / t)
theorem
IsUpperSet.sub_right
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
{t : Set α}
(hs : IsUpperSet s)
:
IsUpperSet (s - t)
theorem
IsUpperSet.div_right
{α : Type u_1}
[OrderedCommGroup α]
{s : Set α}
{t : Set α}
(hs : IsUpperSet s)
:
IsUpperSet (s / t)
theorem
IsLowerSet.sub_left
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
{t : Set α}
(ht : IsLowerSet t)
:
IsUpperSet (s - t)
theorem
IsLowerSet.div_left
{α : Type u_1}
[OrderedCommGroup α]
{s : Set α}
{t : Set α}
(ht : IsLowerSet t)
:
IsUpperSet (s / t)
theorem
IsLowerSet.sub_right
{α : Type u_1}
[OrderedAddCommGroup α]
{s : Set α}
{t : Set α}
(hs : IsLowerSet s)
:
IsLowerSet (s - t)
theorem
IsLowerSet.div_right
{α : Type u_1}
[OrderedCommGroup α]
{s : Set α}
{t : Set α}
(hs : IsLowerSet s)
:
IsLowerSet (s / t)
Equations
- UpperSet.instZero = { zero := UpperSet.Ici 0 }
Equations
- UpperSet.instOne = { one := UpperSet.Ici 1 }
Equations
- UpperSet.instAdd = { add := fun (s t : UpperSet α) => { carrier := Set.image2 (fun (x1 x2 : α) => x1 + x2) ↑s ↑t, upper' := ⋯ } }
theorem
UpperSet.instAdd.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
(s : UpperSet α)
(t : UpperSet α)
:
IsUpperSet (s.carrier + ↑t)
Equations
- UpperSet.instMul = { mul := fun (s t : UpperSet α) => { carrier := Set.image2 (fun (x1 x2 : α) => x1 * x2) ↑s ↑t, upper' := ⋯ } }
theorem
UpperSet.instSub.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
(s : UpperSet α)
(t : UpperSet α)
:
IsUpperSet (s.carrier - ↑t)
Equations
- UpperSet.instSub = { sub := fun (s t : UpperSet α) => { carrier := Set.image2 (fun (x1 x2 : α) => x1 - x2) ↑s ↑t, upper' := ⋯ } }
Equations
- UpperSet.instDiv = { div := fun (s t : UpperSet α) => { carrier := Set.image2 (fun (x1 x2 : α) => x1 / x2) ↑s ↑t, upper' := ⋯ } }
theorem
UpperSet.instVAdd.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
(a : α)
(s : UpperSet α)
:
IsUpperSet (a +ᵥ s.carrier)
@[simp]
@[simp]
@[simp]
@[simp]
theorem
UpperSet.instAddAction.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
:
Function.Injective SetLike.coe
Equations
- UpperSet.instAddAction = Function.Injective.addAction SetLike.coe ⋯ ⋯
Equations
- UpperSet.instMulAction = Function.Injective.mulAction SetLike.coe ⋯ ⋯
Equations
- UpperSet.addCommSemigroup = AddCommSemigroup.mk ⋯
theorem
UpperSet.addCommSemigroup.proof_2
{α : Type u_1}
[OrderedAddCommGroup α]
(a : UpperSet α)
(b : UpperSet α)
:
theorem
UpperSet.addCommSemigroup.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
:
Function.Injective SetLike.coe
Equations
- UpperSet.commSemigroup = CommSemigroup.mk ⋯
theorem
UpperSet.instAddCommMonoid.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
(s : UpperSet α)
:
Equations
- UpperSet.instAddCommMonoid = AddCommMonoid.mk ⋯
theorem
UpperSet.instAddCommMonoid.proof_4
{α : Type u_1}
[OrderedAddCommGroup α]
(a : UpperSet α)
(b : UpperSet α)
:
Equations
- UpperSet.instCommMonoid = CommMonoid.mk ⋯
Equations
- LowerSet.instZero = { zero := LowerSet.Iic 0 }
Equations
- LowerSet.instOne = { one := LowerSet.Iic 1 }
Equations
- LowerSet.instAdd = { add := fun (s t : LowerSet α) => { carrier := Set.image2 (fun (x1 x2 : α) => x1 + x2) ↑s ↑t, lower' := ⋯ } }
theorem
LowerSet.instAdd.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
(s : LowerSet α)
(t : LowerSet α)
:
IsLowerSet (s.carrier + ↑t)
Equations
- LowerSet.instMul = { mul := fun (s t : LowerSet α) => { carrier := Set.image2 (fun (x1 x2 : α) => x1 * x2) ↑s ↑t, lower' := ⋯ } }
Equations
- LowerSet.instSub = { sub := fun (s t : LowerSet α) => { carrier := Set.image2 (fun (x1 x2 : α) => x1 - x2) ↑s ↑t, lower' := ⋯ } }
theorem
LowerSet.instSub.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
(s : LowerSet α)
(t : LowerSet α)
:
IsLowerSet (s.carrier - ↑t)
Equations
- LowerSet.instDiv = { div := fun (s t : LowerSet α) => { carrier := Set.image2 (fun (x1 x2 : α) => x1 / x2) ↑s ↑t, lower' := ⋯ } }
theorem
LowerSet.instVAdd.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
(a : α)
(s : LowerSet α)
:
IsLowerSet (a +ᵥ s.carrier)
@[simp]
@[simp]
@[simp]
@[simp]
Equations
- LowerSet.instAddAction = Function.Injective.addAction SetLike.coe ⋯ ⋯
theorem
LowerSet.instAddAction.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
:
Function.Injective SetLike.coe
Equations
- LowerSet.instMulAction = Function.Injective.mulAction SetLike.coe ⋯ ⋯
Equations
- LowerSet.addCommSemigroup = AddCommSemigroup.mk ⋯
theorem
LowerSet.addCommSemigroup.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
:
Function.Injective SetLike.coe
theorem
LowerSet.addCommSemigroup.proof_2
{α : Type u_1}
[OrderedAddCommGroup α]
(a : LowerSet α)
(b : LowerSet α)
:
Equations
- LowerSet.commSemigroup = CommSemigroup.mk ⋯
theorem
LowerSet.instAddCommMonoid.proof_4
{α : Type u_1}
[OrderedAddCommGroup α]
(a : LowerSet α)
(b : LowerSet α)
:
theorem
LowerSet.instAddCommMonoid.proof_1
{α : Type u_1}
[OrderedAddCommGroup α]
(s : LowerSet α)
:
Equations
- LowerSet.instAddCommMonoid = AddCommMonoid.mk ⋯
Equations
- LowerSet.instCommMonoid = CommMonoid.mk ⋯
@[simp]
theorem
upperClosure_vadd
{α : Type u_1}
[OrderedAddCommGroup α]
(s : Set α)
(a : α)
:
upperClosure (a +ᵥ s) = a +ᵥ upperClosure s
@[simp]
theorem
upperClosure_smul
{α : Type u_1}
[OrderedCommGroup α]
(s : Set α)
(a : α)
:
upperClosure (a • s) = a • upperClosure s
@[simp]
theorem
lowerClosure_vadd
{α : Type u_1}
[OrderedAddCommGroup α]
(s : Set α)
(a : α)
:
lowerClosure (a +ᵥ s) = a +ᵥ lowerClosure s
@[simp]
theorem
lowerClosure_smul
{α : Type u_1}
[OrderedCommGroup α]
(s : Set α)
(a : α)
:
lowerClosure (a • s) = a • lowerClosure s
theorem
add_upperClosure
{α : Type u_1}
[OrderedAddCommGroup α]
(s : Set α)
(t : Set α)
:
s + ↑(upperClosure t) = ↑(upperClosure (s + t))
theorem
mul_upperClosure
{α : Type u_1}
[OrderedCommGroup α]
(s : Set α)
(t : Set α)
:
s * ↑(upperClosure t) = ↑(upperClosure (s * t))
theorem
add_lowerClosure
{α : Type u_1}
[OrderedAddCommGroup α]
(s : Set α)
(t : Set α)
:
s + ↑(lowerClosure t) = ↑(lowerClosure (s + t))
theorem
mul_lowerClosure
{α : Type u_1}
[OrderedCommGroup α]
(s : Set α)
(t : Set α)
:
s * ↑(lowerClosure t) = ↑(lowerClosure (s * t))
theorem
upperClosure_add
{α : Type u_1}
[OrderedAddCommGroup α]
(s : Set α)
(t : Set α)
:
↑(upperClosure s) + t = ↑(upperClosure (s + t))
theorem
upperClosure_mul
{α : Type u_1}
[OrderedCommGroup α]
(s : Set α)
(t : Set α)
:
↑(upperClosure s) * t = ↑(upperClosure (s * t))
theorem
lowerClosure_add
{α : Type u_1}
[OrderedAddCommGroup α]
(s : Set α)
(t : Set α)
:
↑(lowerClosure s) + t = ↑(lowerClosure (s + t))
theorem
lowerClosure_mul
{α : Type u_1}
[OrderedCommGroup α]
(s : Set α)
(t : Set α)
:
↑(lowerClosure s) * t = ↑(lowerClosure (s * t))
@[simp]
theorem
upperClosure_add_distrib
{α : Type u_1}
[OrderedAddCommGroup α]
(s : Set α)
(t : Set α)
:
upperClosure (s + t) = upperClosure s + upperClosure t
@[simp]
theorem
upperClosure_mul_distrib
{α : Type u_1}
[OrderedCommGroup α]
(s : Set α)
(t : Set α)
:
upperClosure (s * t) = upperClosure s * upperClosure t
@[simp]
theorem
lowerClosure_add_distrib
{α : Type u_1}
[OrderedAddCommGroup α]
(s : Set α)
(t : Set α)
:
lowerClosure (s + t) = lowerClosure s + lowerClosure t
@[simp]
theorem
lowerClosure_mul_distrib
{α : Type u_1}
[OrderedCommGroup α]
(s : Set α)
(t : Set α)
:
lowerClosure (s * t) = lowerClosure s * lowerClosure t