Documentation

Mathlib.Algebra.Order.Monoid.Submonoid

Ordered instances on submonoids #

theorem AddSubmonoidClass.toOrderedAddCommMonoid.proof_2 {M : Type u_1} {S : Type u_2} [SetLike S M] (s : S) :
Function.Injective fun (a : { x : M // x s }) => a
theorem AddSubmonoidClass.toOrderedAddCommMonoid.proof_4 {M : Type u_1} {S : Type u_2} [SetLike S M] [OrderedAddCommMonoid M] [AddSubmonoidClass S M] (s : S) :
∀ (x x_1 : { x : M // x s }), (x + x_1) = (x + x_1)
theorem AddSubmonoidClass.toOrderedAddCommMonoid.proof_5 {M : Type u_1} {S : Type u_2} [SetLike S M] [OrderedAddCommMonoid M] [AddSubmonoidClass S M] (s : S) :
∀ (x : { x : M // x s }) (x_1 : ), (x_1 x) = (x_1 x)
@[instance 75]
instance SubmonoidClass.toOrderedCommMonoid {M : Type u_1} {S : Type u_2} [SetLike S M] [OrderedCommMonoid M] [SubmonoidClass S M] (s : S) :
OrderedCommMonoid { x : M // x s }

A submonoid of an OrderedCommMonoid is an OrderedCommMonoid.

Equations
theorem AddSubmonoidClass.toLinearOrderedAddCommMonoid.proof_5 {M : Type u_1} {S : Type u_2} [SetLike S M] [LinearOrderedAddCommMonoid M] [AddSubmonoidClass S M] (s : S) :
∀ (x : { x : M // x s }) (x_1 : ), (x_1 x) = (x_1 x)
theorem AddSubmonoidClass.toLinearOrderedAddCommMonoid.proof_4 {M : Type u_1} {S : Type u_2} [SetLike S M] [LinearOrderedAddCommMonoid M] [AddSubmonoidClass S M] (s : S) :
∀ (x x_1 : { x : M // x s }), (x + x_1) = (x + x_1)
theorem AddSubmonoidClass.toLinearOrderedAddCommMonoid.proof_7 {M : Type u_1} {S : Type u_2} [SetLike S M] [LinearOrderedAddCommMonoid M] (s : S) :
∀ (x x_1 : { x : M // x s }), (x x_1) = (x x_1)
theorem AddSubmonoidClass.toLinearOrderedAddCommMonoid.proof_2 {M : Type u_1} {S : Type u_2} [SetLike S M] (s : S) :
Function.Injective fun (a : { x : M // x s }) => a
theorem AddSubmonoidClass.toLinearOrderedAddCommMonoid.proof_6 {M : Type u_1} {S : Type u_2} [SetLike S M] [LinearOrderedAddCommMonoid M] (s : S) :
∀ (x x_1 : { x : M // x s }), (x x_1) = (x x_1)
theorem AddSubmonoidClass.toOrderedCancelAddCommMonoid.proof_5 {M : Type u_1} {S : Type u_2} [SetLike S M] [OrderedCancelAddCommMonoid M] [AddSubmonoidClass S M] (s : S) :
∀ (x : { x : M // x s }) (x_1 : ), (x_1 x) = (x_1 x)
theorem AddSubmonoidClass.toOrderedCancelAddCommMonoid.proof_2 {M : Type u_1} {S : Type u_2} [SetLike S M] (s : S) :
Function.Injective fun (a : { x : M // x s }) => a
theorem AddSubmonoidClass.toOrderedCancelAddCommMonoid.proof_4 {M : Type u_1} {S : Type u_2} [SetLike S M] [OrderedCancelAddCommMonoid M] [AddSubmonoidClass S M] (s : S) :
∀ (x x_1 : { x : M // x s }), (x + x_1) = (x + x_1)
theorem AddSubmonoidClass.toLinearOrderedCancelAddCommMonoid.proof_4 {M : Type u_1} {S : Type u_2} [SetLike S M] [LinearOrderedCancelAddCommMonoid M] [AddSubmonoidClass S M] (s : S) :
∀ (x x_1 : { x : M // x s }), (x + x_1) = (x + x_1)
theorem AddSubmonoidClass.toLinearOrderedCancelAddCommMonoid.proof_6 {M : Type u_1} {S : Type u_2} [SetLike S M] [LinearOrderedCancelAddCommMonoid M] (s : S) :
∀ (x x_1 : { x : M // x s }), (x x_1) = (x x_1)
theorem AddSubmonoidClass.toLinearOrderedCancelAddCommMonoid.proof_7 {M : Type u_1} {S : Type u_2} [SetLike S M] [LinearOrderedCancelAddCommMonoid M] (s : S) :
∀ (x x_1 : { x : M // x s }), (x x_1) = (x x_1)
theorem AddSubmonoidClass.toLinearOrderedCancelAddCommMonoid.proof_5 {M : Type u_1} {S : Type u_2} [SetLike S M] [LinearOrderedCancelAddCommMonoid M] [AddSubmonoidClass S M] (s : S) :
∀ (x : { x : M // x s }) (x_1 : ), (x_1 x) = (x_1 x)
theorem AddSubmonoidClass.toLinearOrderedCancelAddCommMonoid.proof_2 {M : Type u_1} {S : Type u_2} [SetLike S M] (s : S) :
Function.Injective fun (a : { x : M // x s }) => a
theorem AddSubmonoid.toOrderedAddCommMonoid.proof_2 {M : Type u_1} [OrderedAddCommMonoid M] (S : AddSubmonoid M) :
Function.Injective fun (a : { x : M // x S }) => a
theorem AddSubmonoid.toOrderedAddCommMonoid.proof_5 {M : Type u_1} [OrderedAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x : { x : M // x S }) (x_1 : ), (x_1 x) = (x_1 x)
theorem AddSubmonoid.toOrderedAddCommMonoid.proof_4 {M : Type u_1} [OrderedAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x x_1 : { x : M // x S }), (x + x_1) = (x + x_1)

An AddSubmonoid of an OrderedAddCommMonoid is an OrderedAddCommMonoid.

Equations
instance Submonoid.toOrderedCommMonoid {M : Type u_1} [OrderedCommMonoid M] (S : Submonoid M) :
OrderedCommMonoid { x : M // x S }

A submonoid of an OrderedCommMonoid is an OrderedCommMonoid.

Equations
theorem AddSubmonoid.toLinearOrderedAddCommMonoid.proof_4 {M : Type u_1} [LinearOrderedAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x x_1 : { x : M // x S }), (x + x_1) = (x + x_1)
theorem AddSubmonoid.toLinearOrderedAddCommMonoid.proof_5 {M : Type u_1} [LinearOrderedAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x : { x : M // x S }) (x_1 : ), (x_1 x) = (x_1 x)
theorem AddSubmonoid.toLinearOrderedAddCommMonoid.proof_7 {M : Type u_1} [LinearOrderedAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x x_1 : { x : M // x S }), (x x_1) = (x x_1)
theorem AddSubmonoid.toLinearOrderedAddCommMonoid.proof_6 {M : Type u_1} [LinearOrderedAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x x_1 : { x : M // x S }), (x x_1) = (x x_1)

A submonoid of a LinearOrderedCommMonoid is a LinearOrderedCommMonoid.

Equations
theorem AddSubmonoid.toOrderedCancelAddCommMonoid.proof_5 {M : Type u_1} [OrderedCancelAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x : { x : M // x S }) (x_1 : ), (x_1 x) = (x_1 x)
theorem AddSubmonoid.toOrderedCancelAddCommMonoid.proof_4 {M : Type u_1} [OrderedCancelAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x x_1 : { x : M // x S }), (x + x_1) = (x + x_1)

A submonoid of an OrderedCancelCommMonoid is an OrderedCancelCommMonoid.

Equations
theorem AddSubmonoid.toLinearOrderedCancelAddCommMonoid.proof_7 {M : Type u_1} [LinearOrderedCancelAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x x_1 : { x : M // x S }), (x x_1) = (x x_1)
theorem AddSubmonoid.toLinearOrderedCancelAddCommMonoid.proof_5 {M : Type u_1} [LinearOrderedCancelAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x : { x : M // x S }) (x_1 : ), (x_1 x) = (x_1 x)
theorem AddSubmonoid.toLinearOrderedCancelAddCommMonoid.proof_6 {M : Type u_1} [LinearOrderedCancelAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x x_1 : { x : M // x S }), (x x_1) = (x x_1)
theorem AddSubmonoid.toLinearOrderedCancelAddCommMonoid.proof_4 {M : Type u_1} [LinearOrderedCancelAddCommMonoid M] (S : AddSubmonoid M) :
∀ (x x_1 : { x : M // x S }), (x + x_1) = (x + x_1)

A submonoid of a LinearOrderedCancelCommMonoid is a LinearOrderedCancelCommMonoid.

Equations
def AddSubmonoid.nonneg (M : Type u_1) [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 x2] :

The submonoid of nonnegative elements.

Equations
Instances For
    theorem AddSubmonoid.nonneg.proof_1 (M : Type u_1) [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 x2] :
    ∀ {a b : M}, 0 a0 b0 a + b
    @[simp]
    theorem Submonoid.oneLE_coe (M : Type u_1) [Monoid M] [Preorder M] [CovariantClass M M (fun (x1 x2 : M) => x1 * x2) fun (x1 x2 : M) => x1 x2] :
    @[simp]
    theorem AddSubmonoid.nonneg_coe (M : Type u_1) [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 x2] :
    def Submonoid.oneLE (M : Type u_1) [Monoid M] [Preorder M] [CovariantClass M M (fun (x1 x2 : M) => x1 * x2) fun (x1 x2 : M) => x1 x2] :

    The submonoid of elements greater than 1.

    Equations
    Instances For
      @[simp]
      theorem AddSubmonoid.mem_nonneg {M : Type u_1} [AddMonoid M] [Preorder M] [CovariantClass M M (fun (x1 x2 : M) => x1 + x2) fun (x1 x2 : M) => x1 x2] {a : M} :
      @[simp]
      theorem Submonoid.mem_oneLE {M : Type u_1} [Monoid M] [Preorder M] [CovariantClass M M (fun (x1 x2 : M) => x1 * x2) fun (x1 x2 : M) => x1 x2] {a : M} :