Polynomials supported by a set of variables #
This file contains the definition and lemmas about MvPolynomial.supported
.
Main definitions #
MvPolynomial.supported
: Given a sets : Set σ
,supported R s
is the subalgebra ofMvPolynomial σ R
consisting of polynomials whose set of variables is contained ins
. This subalgebra is isomorphic toMvPolynomial s R
.
Tags #
variables, polynomial, vars
noncomputable def
MvPolynomial.supported
{σ : Type u_1}
(R : Type u)
[CommSemiring R]
(s : Set σ)
:
Subalgebra R (MvPolynomial σ R)
The set of polynomials whose variables are contained in s
as a Subalgebra
over R
.
Equations
- MvPolynomial.supported R s = Algebra.adjoin R (MvPolynomial.X '' s)
Instances For
theorem
MvPolynomial.supported_eq_range_rename
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
(s : Set σ)
:
MvPolynomial.supported R s = (MvPolynomial.rename Subtype.val).range
noncomputable def
MvPolynomial.supportedEquivMvPolynomial
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
(s : Set σ)
:
{ x : MvPolynomial σ R // x ∈ MvPolynomial.supported R s } ≃ₐ[R] MvPolynomial (↑s) R
The isomorphism between the subalgebra of polynomials supported by s
and
MvPolynomial s R
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
MvPolynomial.supportedEquivMvPolynomial_symm_C
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
(s : Set σ)
(x : R)
:
(MvPolynomial.supportedEquivMvPolynomial s).symm (MvPolynomial.C x) = (algebraMap R { x : MvPolynomial σ R // x ∈ MvPolynomial.supported R s }) x
@[simp]
theorem
MvPolynomial.supportedEquivMvPolynomial_symm_X
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
(s : Set σ)
(i : ↑s)
:
↑((MvPolynomial.supportedEquivMvPolynomial s).symm (MvPolynomial.X i)) = MvPolynomial.X ↑i
theorem
MvPolynomial.mem_supported
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
{p : MvPolynomial σ R}
{s : Set σ}
:
p ∈ MvPolynomial.supported R s ↔ ↑p.vars ⊆ s
theorem
MvPolynomial.supported_eq_vars_subset
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
{s : Set σ}
:
↑(MvPolynomial.supported R s) = {p : MvPolynomial σ R | ↑p.vars ⊆ s}
@[simp]
theorem
MvPolynomial.mem_supported_vars
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
(p : MvPolynomial σ R)
:
p ∈ MvPolynomial.supported R ↑p.vars
theorem
MvPolynomial.supported_eq_adjoin_X
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
(s : Set σ)
:
MvPolynomial.supported R s = Algebra.adjoin R (MvPolynomial.X '' s)
@[simp]
theorem
MvPolynomial.supported_univ
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
:
MvPolynomial.supported R Set.univ = ⊤
@[simp]
theorem
MvPolynomial.supported_mono
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
{s : Set σ}
{t : Set σ}
(st : s ⊆ t)
:
@[simp]
theorem
MvPolynomial.X_mem_supported
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
{s : Set σ}
[Nontrivial R]
{i : σ}
:
MvPolynomial.X i ∈ MvPolynomial.supported R s ↔ i ∈ s
@[simp]
theorem
MvPolynomial.supported_le_supported_iff
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
{s : Set σ}
{t : Set σ}
[Nontrivial R]
:
MvPolynomial.supported R s ≤ MvPolynomial.supported R t ↔ s ⊆ t
theorem
MvPolynomial.supported_strictMono
{σ : Type u_1}
{R : Type u}
[CommSemiring R]
[Nontrivial R]
:
theorem
MvPolynomial.exists_restrict_to_vars
{σ : Type u_1}
{s : Set σ}
(R : Type u_3)
[CommRing R]
{F : MvPolynomial σ ℤ}
(hF : ↑F.vars ⊆ s)
:
∃ (f : (↑s → R) → R), ∀ (x : σ → R), f (x ∘ Subtype.val) = (MvPolynomial.aeval x) F