Ordered instances on submodules #
instance
Submodule.toOrderedAddCommMonoid
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[OrderedAddCommMonoid M]
[Module R M]
(S : Submodule R M)
:
OrderedAddCommMonoid { x : M // x ∈ S }
A submodule of an OrderedAddCommMonoid
is an OrderedAddCommMonoid
.
Equations
- S.toOrderedAddCommMonoid = Function.Injective.orderedAddCommMonoid Subtype.val ⋯ ⋯ ⋯ ⋯
instance
Submodule.toLinearOrderedAddCommMonoid
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[LinearOrderedAddCommMonoid M]
[Module R M]
(S : Submodule R M)
:
LinearOrderedAddCommMonoid { x : M // x ∈ S }
A submodule of a LinearOrderedAddCommMonoid
is a LinearOrderedAddCommMonoid
.
Equations
- S.toLinearOrderedAddCommMonoid = Function.Injective.linearOrderedAddCommMonoid Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
Submodule.toOrderedCancelAddCommMonoid
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[OrderedCancelAddCommMonoid M]
[Module R M]
(S : Submodule R M)
:
OrderedCancelAddCommMonoid { x : M // x ∈ S }
A submodule of an OrderedCancelAddCommMonoid
is an OrderedCancelAddCommMonoid
.
Equations
- S.toOrderedCancelAddCommMonoid = Function.Injective.orderedCancelAddCommMonoid Subtype.val ⋯ ⋯ ⋯ ⋯
instance
Submodule.toLinearOrderedCancelAddCommMonoid
{R : Type u_1}
{M : Type u_2}
[Semiring R]
[LinearOrderedCancelAddCommMonoid M]
[Module R M]
(S : Submodule R M)
:
LinearOrderedCancelAddCommMonoid { x : M // x ∈ S }
A submodule of a LinearOrderedCancelAddCommMonoid
is a
LinearOrderedCancelAddCommMonoid
.
Equations
- S.toLinearOrderedCancelAddCommMonoid = Function.Injective.linearOrderedCancelAddCommMonoid Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
Submodule.toOrderedAddCommGroup
{R : Type u_1}
{M : Type u_2}
[Ring R]
[OrderedAddCommGroup M]
[Module R M]
(S : Submodule R M)
:
OrderedAddCommGroup { x : M // x ∈ S }
A submodule of an OrderedAddCommGroup
is an OrderedAddCommGroup
.
Equations
- S.toOrderedAddCommGroup = Function.Injective.orderedAddCommGroup Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
instance
Submodule.toLinearOrderedAddCommGroup
{R : Type u_1}
{M : Type u_2}
[Ring R]
[LinearOrderedAddCommGroup M]
[Module R M]
(S : Submodule R M)
:
LinearOrderedAddCommGroup { x : M // x ∈ S }
A submodule of a LinearOrderedAddCommGroup
is a
LinearOrderedAddCommGroup
.
Equations
- S.toLinearOrderedAddCommGroup = Function.Injective.linearOrderedAddCommGroup Subtype.val ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯