Documentation

Mathlib.Algebra.Module.Submodule.Order

Ordered instances on submodules #

instance Submodule.toOrderedAddCommMonoid {R : Type u_1} {M : Type u_2} [Semiring R] [OrderedAddCommMonoid M] [Module R M] (S : Submodule R M) :
OrderedAddCommMonoid { x : M // x S }

A submodule of an OrderedAddCommMonoid is an OrderedAddCommMonoid.

Equations

A submodule of a LinearOrderedAddCommMonoid is a LinearOrderedAddCommMonoid.

Equations

A submodule of an OrderedCancelAddCommMonoid is an OrderedCancelAddCommMonoid.

Equations

A submodule of a LinearOrderedCancelAddCommMonoid is a LinearOrderedCancelAddCommMonoid.

Equations
instance Submodule.toOrderedAddCommGroup {R : Type u_1} {M : Type u_2} [Ring R] [OrderedAddCommGroup M] [Module R M] (S : Submodule R M) :
OrderedAddCommGroup { x : M // x S }

A submodule of an OrderedAddCommGroup is an OrderedAddCommGroup.

Equations
instance Submodule.toLinearOrderedAddCommGroup {R : Type u_1} {M : Type u_2} [Ring R] [LinearOrderedAddCommGroup M] [Module R M] (S : Submodule R M) :

A submodule of a LinearOrderedAddCommGroup is a LinearOrderedAddCommGroup.

Equations