Documentation

Mathlib.Algebra.Module.Submodule.Localization

Localization of Submodules #

Results about localizations of submodules and quotient modules are provided in this file.

Main result #

TODO #

def Submodule.localized' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

Let S be the localization of R at p and N be the localization of M at p. This is the localization of an R-submodule of M viewed as an S-submodule of N.

Equations
Instances For
    theorem Submodule.mem_localized' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (x : N) :
    x Submodule.localized' S p f M' mM', ∃ (s : { x : R // x p }), IsLocalizedModule.mk' f m s = x
    @[reducible, inline]
    abbrev Submodule.localized {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :

    The localization of an R-submodule of M at p viewed as an Rₚ-submodule of Mₚ.

    Equations
    Instances For
      @[simp]
      theorem Submodule.toLocalized'_apply_coe {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (c : { x : M // x M' }) :
      ((Submodule.toLocalized' S p f M') c) = f c
      def Submodule.toLocalized' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
      { x : M // x M' } →ₗ[R] { x : N // x Submodule.localized' S p f M' }

      The localization map of a submodule.

      Equations
      Instances For
        @[reducible, inline]
        abbrev Submodule.toLocalized {R : Type u} {M : Type v} [CommRing R] [AddCommGroup M] [Module R M] (p : Submonoid R) (M' : Submodule R M) :
        { x : M // x M' } →ₗ[R] { x : LocalizedModule p M // x Submodule.localized p M' }

        The localization map of a submodule.

        Equations
        Instances For
          instance Submodule.isLocalizedModule {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
          Equations
          • =
          def Submodule.toLocalizedQuotient' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :

          The localization map of a quotient module.

          Equations
          Instances For
            @[reducible, inline]

            The localization map of a quotient module.

            Equations
            Instances For
              @[simp]
              theorem Submodule.toLocalizedQuotient'_mk {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) (x : M) :
              instance IsLocalizedModule.toLocalizedQuotient' {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] (M' : Submodule R M) :
              Equations
              • =
              theorem LinearMap.localized'_ker_eq_ker_localizedMap {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type w} [AddCommGroup P] [Module R P] {Q : Type w'} [AddCommGroup Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
              theorem LinearMap.ker_localizedMap_eq_localized'_ker {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type w} [AddCommGroup P] [Module R P] {Q : Type w'} [AddCommGroup Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
              @[simp]
              theorem LinearMap.toKerIsLocalized_apply_coe {R : Type u} {M : Type v} {N : Type v'} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type w} [AddCommGroup P] [Module R P] {Q : Type w'} [AddCommGroup Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) (c : { x : M // x LinearMap.ker g }) :
              ((LinearMap.toKerIsLocalized p f f' g) c) = f c
              noncomputable def LinearMap.toKerIsLocalized {R : Type u} {M : Type v} {N : Type v'} [CommRing R] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type w} [AddCommGroup P] [Module R P] {Q : Type w'} [AddCommGroup Q] [Module R Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :
              { x : M // x LinearMap.ker g } →ₗ[R] { x : N // x LinearMap.ker ((IsLocalizedModule.map p f f') g) }

              The canonical map from the kernel of g to the kernel of g localized at a submonoid.

              This is a localization map by LinearMap.toKerLocalized_isLocalizedModule.

              Equations
              Instances For
                theorem LinearMap.toKerLocalized_isLocalizedModule {R : Type u} (S : Type u') {M : Type v} {N : Type v'} [CommRing R] [CommRing S] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [Algebra R S] [Module S N] [IsScalarTower R S N] (p : Submonoid R) [IsLocalization p S] (f : M →ₗ[R] N) [IsLocalizedModule p f] {P : Type w} [AddCommGroup P] [Module R P] {Q : Type w'} [AddCommGroup Q] [Module R Q] [Module S Q] [IsScalarTower R S Q] (f' : P →ₗ[R] Q) [IsLocalizedModule p f'] (g : M →ₗ[R] P) :

                The canonical map to the kernel of the localization of g is localizing. In other words, localization commutes with kernels.