Documentation

Mathlib.Algebra.Lie.EngelSubalgebra

Engel subalgebras #

This file defines Engel subalgebras of a Lie algebra and provides basic related properties.

The Engel subalgebra LieSubalgebra.Engel R x consists of all y : L such that (ad R L x)^n kills y for some n.

Main results #

Engel subalgebras are self-normalizing (LieSubalgebra.normalizer_engel), and minimal ones are nilpotent (TODO), hence Cartan subalgebras.

@[simp]
theorem LieSubalgebra.engel_carrier (R : Type u_1) {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (x : L) :
(LieSubalgebra.engel R x) = sfun (x_1 : Submodule R L) => ∀ (a : ), LinearMap.ker ((LieAlgebra.ad R L) x ^ a) x_1, s
def LieSubalgebra.engel (R : Type u_1) {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (x : L) :

The Engel subalgebra Engel R x consists of all y : L such that (ad R L x)^n kills y for some n.

Engel subalgebras are self-normalizing (LieSubalgebra.normalizer_engel), and minimal ones are nilpotent, hence Cartan subalgebras.

Equations
Instances For
    theorem LieSubalgebra.mem_engel_iff (R : Type u_1) {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (x : L) (y : L) :
    y LieSubalgebra.engel R x ∃ (n : ), ((LieAlgebra.ad R L) x ^ n) y = 0
    theorem LieSubalgebra.self_mem_engel (R : Type u_1) {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (x : L) :
    @[simp]
    theorem LieSubalgebra.engel_zero (R : Type u_1) {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] :
    @[simp]
    theorem LieSubalgebra.normalizer_engel (R : Type u_1) {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (x : L) :

    Engel subalgebras are self-normalizing. See LieSubalgebra.normalizer_eq_self_of_engel_le for a proof that Lie-subalgebras containing an Engel subalgebra are also self-normalizing, provided that the ambient Lie algebra is artinina.

    theorem LieSubalgebra.normalizer_eq_self_of_engel_le {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] [IsArtinian R L] (H : LieSubalgebra R L) (x : L) (h : LieSubalgebra.engel R x H) :
    H.normalizer = H

    A Lie-subalgebra of an Artinian Lie algebra is self-normalizing if it contains an Engel subalgebra. See LieSubalgebra.normalizer_engel for a proof that Engel subalgebras are self-normalizing, avoiding the Artinian condition.

    theorem LieSubalgebra.isNilpotent_of_forall_le_engel {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] [IsNoetherian R L] (H : LieSubalgebra R L) (h : xH, H LieSubalgebra.engel R x) :
    LieAlgebra.IsNilpotent R { x : L // x H }

    A Lie subalgebra of a Noetherian Lie algebra is nilpotent if it is contained in the Engel subalgebra of all its elements.