Documentation

Mathlib.Algebra.Homology.ShortComplex.QuasiIso

Quasi-isomorphisms of short complexes #

This file introduces the typeclass QuasiIso φ for a morphism φ : S₁ ⟶ S₂ of short complexes (which have homology): the condition is that the induced morphism homologyMap φ in homology is an isomorphism.

A morphism φ : S₁ ⟶ S₂ of short complexes that have homology is a quasi-isomorphism if the induced map homologyMap φ : S₁.homology ⟶ S₂.homology is an isomorphism.

Instances
    theorem CategoryTheory.ShortComplex.LeftHomologyMapData.quasiIso_iff {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ : CategoryTheory.ShortComplex C} {S₂ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] {φ : S₁ S₂} {h₁ : S₁.LeftHomologyData} {h₂ : S₂.LeftHomologyData} (γ : CategoryTheory.ShortComplex.LeftHomologyMapData φ h₁ h₂) :
    theorem CategoryTheory.ShortComplex.RightHomologyMapData.quasiIso_iff {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ : CategoryTheory.ShortComplex C} {S₂ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] {φ : S₁ S₂} {h₁ : S₁.RightHomologyData} {h₂ : S₂.RightHomologyData} (γ : CategoryTheory.ShortComplex.RightHomologyMapData φ h₁ h₂) :
    theorem CategoryTheory.ShortComplex.quasiIso_iff_isIso_liftCycles {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ : CategoryTheory.ShortComplex C} {S₂ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] (φ : S₁ S₂) (hf₁ : S₁.f = 0) (hg₁ : S₁.g = 0) (hf₂ : S₂.f = 0) :
    theorem CategoryTheory.ShortComplex.quasiIso_iff_isIso_descOpcycles {C : Type u_2} [CategoryTheory.Category.{u_1, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {S₁ : CategoryTheory.ShortComplex C} {S₂ : CategoryTheory.ShortComplex C} [S₁.HasHomology] [S₂.HasHomology] (φ : S₁ S₂) (hg₁ : S₁.g = 0) (hf₂ : S₂.f = 0) (hg₂ : S₂.g = 0) :