Long exact sequences of Ext-groups #
In this file, we obtain the covariant long exact sequence of Ext when n₀ + 1 = n₁:
Ext X S.X₁ n₀ → Ext X S.X₂ n₀ → Ext X S.X₃ n₀ → Ext X S.X₁ n₁ → Ext X S.X₂ n₁ → Ext X S.X₃ n₁
when S is a short exact short complex in an abelian category C, n₀ + 1 = n₁ and X : C.
Similarly, if Y : C, there is a contravariant long exact sequence :
Ext S.X₃ Y n₀ → Ext S.X₂ Y n₀ → Ext S.X₁ Y n₀ → Ext S.X₃ Y n₁ → Ext S.X₂ Y n₁ → Ext S.X₁ Y n₁.
Alternative formulation of covariant_sequence_exact₂
Alternative formulation of covariant_sequence_exact₃
Alternative formulation of covariant_sequence_exact₁
Given a short exact short complex S in an abelian category C and an object X : C,
this is the long exact sequence
Ext X S.X₁ n₀ → Ext X S.X₂ n₀ → Ext X S.X₃ n₀ → Ext X S.X₁ n₁ → Ext X S.X₂ n₁ → Ext X S.X₃ n₁
when n₀ + 1 = n₁
Equations
- One or more equations did not get rendered due to their size.
Instances For
Alternative formulation of contravariant_sequence_exact₂
Alternative formulation of contravariant_sequence_exact₁
Alternative formulation of contravariant_sequence_exact₃
Given a short exact short complex S in an abelian category C and an object Y : C,
this is the long exact sequence
Ext S.X₃ Y n₀ → Ext S.X₂ Y n₀ → Ext S.X₁ Y n₀ → Ext S.X₃ Y n₁ → Ext S.X₂ Y n₁ → Ext S.X₁ Y n₁
when 1 + n₀ = n₁.
Equations
- One or more equations did not get rendered due to their size.