Documentation

Mathlib.Algebra.Group.WithOne.Basic

More operations on WithOne and WithZero #

This file defines various bundled morphisms on WithOne and WithZero that were not available in Algebra/Group/WithOne/Defs.

Main definitions #

Equations
theorem WithZero.involutiveNeg.proof_1 {α : Type u_1} [InvolutiveNeg α] (a : WithZero α) :
Option.map Neg.neg (Option.map Neg.neg a) = a
Equations
def WithZero.coeAddHom {α : Type u} [Add α] :

WithZero.coe as a bundled morphism

Equations
  • WithZero.coeAddHom = { toFun := WithZero.coe, map_add' := }
Instances For
    theorem WithZero.coeAddHom.proof_1 {α : Type u_1} [Add α] :
    ∀ (x x_1 : α), (x + x_1) = (x + x_1)
    @[simp]
    theorem WithZero.coeAddHom_apply {α : Type u} [Add α] :
    ∀ (a : α), WithZero.coeAddHom a = a
    @[simp]
    theorem WithOne.coeMulHom_apply {α : Type u} [Mul α] :
    ∀ (a : α), WithOne.coeMulHom a = a
    def WithOne.coeMulHom {α : Type u} [Mul α] :

    WithOne.coe as a bundled morphism

    Equations
    • WithOne.coeMulHom = { toFun := WithOne.coe, map_mul' := }
    Instances For
      theorem WithZero.lift.proof_4 {α : Type u_1} {β : Type u_2} [Add α] [AddZeroClass β] (F : WithZero α →+ β) :
      (fun (f : AddHom α β) => { toFun := fun (x : WithZero α) => Option.casesOn x 0 f, map_zero' := , map_add' := }) ((fun (F : WithZero α →+ β) => (↑F).comp WithZero.coeAddHom) F) = F
      theorem WithZero.lift.proof_1 {α : Type u_2} {β : Type u_1} [Add α] [AddZeroClass β] (f : AddHom α β) :
      (fun (x : WithZero α) => Option.casesOn x 0 f) 0 = (fun (x : WithZero α) => Option.casesOn x 0 f) 0
      def WithZero.lift {α : Type u} {β : Type v} [Add α] [AddZeroClass β] :
      AddHom α β (WithZero α →+ β)

      Lift an add semigroup homomorphism f to a bundled add monoid homomorphism.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem WithZero.lift.proof_2 {α : Type u_1} {β : Type u_2} [Add α] [AddZeroClass β] (f : AddHom α β) (x : WithZero α) (y : WithZero α) :
        { toFun := fun (x : WithZero α) => Option.casesOn x 0 f, map_zero' := }.toFun (x + y) = { toFun := fun (x : WithZero α) => Option.casesOn x 0 f, map_zero' := }.toFun x + { toFun := fun (x : WithZero α) => Option.casesOn x 0 f, map_zero' := }.toFun y
        theorem WithZero.lift.proof_3 {α : Type u_1} {β : Type u_2} [Add α] [AddZeroClass β] (f : AddHom α β) :
        (fun (F : WithZero α →+ β) => (↑F).comp WithZero.coeAddHom) ((fun (f : AddHom α β) => { toFun := fun (x : WithZero α) => Option.casesOn x 0 f, map_zero' := , map_add' := }) f) = f
        def WithOne.lift {α : Type u} {β : Type v} [Mul α] [MulOneClass β] :
        (α →ₙ* β) (WithOne α →* β)

        Lift a semigroup homomorphism f to a bundled monoid homomorphism.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem WithZero.lift_coe {α : Type u} {β : Type v} [Add α] [AddZeroClass β] (f : AddHom α β) (x : α) :
          (WithZero.lift f) x = f x
          @[simp]
          theorem WithOne.lift_coe {α : Type u} {β : Type v} [Mul α] [MulOneClass β] (f : α →ₙ* β) (x : α) :
          (WithOne.lift f) x = f x
          theorem WithZero.lift_zero {α : Type u} {β : Type v} [Add α] [AddZeroClass β] (f : AddHom α β) :
          (WithZero.lift f) 0 = 0
          theorem WithOne.lift_one {α : Type u} {β : Type v} [Mul α] [MulOneClass β] (f : α →ₙ* β) :
          (WithOne.lift f) 1 = 1
          theorem WithZero.lift_unique {α : Type u} {β : Type v} [Add α] [AddZeroClass β] (f : WithZero α →+ β) :
          f = WithZero.lift ((↑f).comp WithZero.coeAddHom)
          theorem WithOne.lift_unique {α : Type u} {β : Type v} [Mul α] [MulOneClass β] (f : WithOne α →* β) :
          f = WithOne.lift ((↑f).comp WithOne.coeMulHom)
          def WithZero.map {α : Type u} {β : Type v} [Add α] [Add β] (f : AddHom α β) :

          Given an additive map from α → β returns an add monoid homomorphism from WithZero α to WithZero β

          Equations
          Instances For
            def WithOne.map {α : Type u} {β : Type v} [Mul α] [Mul β] (f : α →ₙ* β) :

            Given a multiplicative map from α → β returns a monoid homomorphism from WithOne α to WithOne β

            Equations
            Instances For
              @[simp]
              theorem WithZero.map_coe {α : Type u} {β : Type v} [Add α] [Add β] (f : AddHom α β) (a : α) :
              (WithZero.map f) a = (f a)
              @[simp]
              theorem WithOne.map_coe {α : Type u} {β : Type v} [Mul α] [Mul β] (f : α →ₙ* β) (a : α) :
              (WithOne.map f) a = (f a)
              @[simp]
              theorem WithZero.map_map {α : Type u} {β : Type v} {γ : Type w} [Add α] [Add β] [Add γ] (f : AddHom α β) (g : AddHom β γ) (x : WithZero α) :
              (WithZero.map g) ((WithZero.map f) x) = (WithZero.map (g.comp f)) x
              theorem WithOne.map_map {α : Type u} {β : Type v} {γ : Type w} [Mul α] [Mul β] [Mul γ] (f : α →ₙ* β) (g : β →ₙ* γ) (x : WithOne α) :
              (WithOne.map g) ((WithOne.map f) x) = (WithOne.map (g.comp f)) x
              @[simp]
              theorem WithZero.map_comp {α : Type u} {β : Type v} {γ : Type w} [Add α] [Add β] [Add γ] (f : AddHom α β) (g : AddHom β γ) :
              WithZero.map (g.comp f) = (WithZero.map g).comp (WithZero.map f)
              @[simp]
              theorem WithOne.map_comp {α : Type u} {β : Type v} {γ : Type w} [Mul α] [Mul β] [Mul γ] (f : α →ₙ* β) (g : β →ₙ* γ) :
              WithOne.map (g.comp f) = (WithOne.map g).comp (WithOne.map f)
              theorem AddEquiv.withZeroCongr.proof_1 {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) :
              ∀ (x : WithZero α), (WithZero.map e.symm.toAddHom) ((WithZero.map e.toAddHom) x) = x
              theorem AddEquiv.withZeroCongr.proof_2 {α : Type u_2} {β : Type u_1} [Add α] [Add β] (e : α ≃+ β) :
              ∀ (x : WithZero β), (WithZero.map e.toAddHom) ((WithZero.map e.symm.toAddHom) x) = x
              theorem AddEquiv.withZeroCongr.proof_3 {α : Type u_1} {β : Type u_2} [Add α] [Add β] (e : α ≃+ β) (x : WithZero α) (y : WithZero α) :
              (↑(WithZero.map e.toAddHom)).toFun (x + y) = (↑(WithZero.map e.toAddHom)).toFun x + (↑(WithZero.map e.toAddHom)).toFun y
              def AddEquiv.withZeroCongr {α : Type u} {β : Type v} [Add α] [Add β] (e : α ≃+ β) :

              A version of Equiv.optionCongr for WithZero.

              Equations
              • e.withZeroCongr = { toFun := (WithZero.map e.toAddHom), invFun := (WithZero.map e.symm.toAddHom), left_inv := , right_inv := , map_add' := }
              Instances For
                @[simp]
                theorem MulEquiv.withOneCongr_apply {α : Type u} {β : Type v} [Mul α] [Mul β] (e : α ≃* β) (a : WithOne α) :
                e.withOneCongr a = (WithOne.map e.toMulHom) a
                @[simp]
                theorem AddEquiv.withZeroCongr_apply {α : Type u} {β : Type v} [Add α] [Add β] (e : α ≃+ β) (a : WithZero α) :
                e.withZeroCongr a = (WithZero.map e.toAddHom) a
                def MulEquiv.withOneCongr {α : Type u} {β : Type v} [Mul α] [Mul β] (e : α ≃* β) :

                A version of Equiv.optionCongr for WithOne.

                Equations
                • e.withOneCongr = { toFun := (WithOne.map e.toMulHom), invFun := (WithOne.map e.symm.toMulHom), left_inv := , right_inv := , map_mul' := }
                Instances For
                  @[simp]
                  theorem AddEquiv.withZeroCongr_refl {α : Type u} [Add α] :
                  (AddEquiv.refl α).withZeroCongr = AddEquiv.refl (WithZero α)
                  @[simp]
                  theorem MulEquiv.withOneCongr_refl {α : Type u} [Mul α] :
                  (MulEquiv.refl α).withOneCongr = MulEquiv.refl (WithOne α)
                  @[simp]
                  theorem AddEquiv.withZeroCongr_symm {α : Type u} {β : Type v} [Add α] [Add β] (e : α ≃+ β) :
                  e.withZeroCongr.symm = e.symm.withZeroCongr
                  @[simp]
                  theorem MulEquiv.withOneCongr_symm {α : Type u} {β : Type v} [Mul α] [Mul β] (e : α ≃* β) :
                  e.withOneCongr.symm = e.symm.withOneCongr
                  @[simp]
                  theorem AddEquiv.withZeroCongr_trans {α : Type u} {β : Type v} {γ : Type w} [Add α] [Add β] [Add γ] (e₁ : α ≃+ β) (e₂ : β ≃+ γ) :
                  e₁.withZeroCongr.trans e₂.withZeroCongr = (e₁.trans e₂).withZeroCongr
                  @[simp]
                  theorem MulEquiv.withOneCongr_trans {α : Type u} {β : Type v} {γ : Type w} [Mul α] [Mul β] [Mul γ] (e₁ : α ≃* β) (e₂ : β ≃* γ) :
                  e₁.withOneCongr.trans e₂.withOneCongr = (e₁.trans e₂).withOneCongr