Documentation

Mathlib.Algebra.Group.Subgroup.ZPowers

Subgroups generated by an element #

Tags #

subgroup, subgroups

def Subgroup.zpowers {G : Type u_1} [Group G] (g : G) :

The subgroup generated by an element.

Equations
Instances For
@[simp]
theorem Subgroup.mem_zpowers {G : Type u_1} [Group G] (g : G) :
theorem Subgroup.coe_zpowers {G : Type u_1} [Group G] (g : G) :
(Subgroup.zpowers g) = Set.range fun (x : ) => g ^ x
noncomputable instance Subgroup.decidableMemZPowers {G : Type u_1} [Group G] {a : G} :
Equations
@[simp]
theorem Subgroup.range_zpowersHom {G : Type u_1} [Group G] (g : G) :
((zpowersHom G) g).range = Subgroup.zpowers g
theorem Subgroup.mem_zpowers_iff {G : Type u_1} [Group G] {g : G} {h : G} :
h Subgroup.zpowers g ∃ (k : ), g ^ k = h
@[simp]
theorem Subgroup.zpow_mem_zpowers {G : Type u_1} [Group G] (g : G) (k : ) :
@[simp]
theorem Subgroup.npow_mem_zpowers {G : Type u_1} [Group G] (g : G) (k : ) :
@[simp]
theorem Subgroup.forall_zpowers {G : Type u_1} [Group G] {x : G} {p : { x_1 : G // x_1 Subgroup.zpowers x }Prop} :
(∀ (g : { x_1 : G // x_1 Subgroup.zpowers x }), p g) ∀ (m : ), p x ^ m,
@[simp]
theorem Subgroup.exists_zpowers {G : Type u_1} [Group G] {x : G} {p : { x_1 : G // x_1 Subgroup.zpowers x }Prop} :
(∃ (g : { x_1 : G // x_1 Subgroup.zpowers x }), p g) ∃ (m : ), p x ^ m,
theorem Subgroup.forall_mem_zpowers {G : Type u_1} [Group G] {x : G} {p : GProp} :
(∀ gSubgroup.zpowers x, p g) ∀ (m : ), p (x ^ m)
theorem Subgroup.exists_mem_zpowers {G : Type u_1} [Group G] {x : G} {p : GProp} :
(∃ gSubgroup.zpowers x, p g) ∃ (m : ), p (x ^ m)
instance Subgroup.instCountableSubtypeMemZpowers {G : Type u_1} [Group G] (a : G) :
Countable { x : G // x Subgroup.zpowers a }
Equations
  • =
def AddSubgroup.zmultiples {A : Type u_2} [AddGroup A] (a : A) :

The subgroup generated by an element.

Equations
Instances For
@[simp]
@[simp]
theorem AddSubgroup.coe_zmultiples {G : Type u_1} [AddGroup G] (g : G) :
(AddSubgroup.zmultiples g) = Set.range fun (x : ) => x g
noncomputable instance AddSubgroup.decidableMemZMultiples {G : Type u_1} [AddGroup G] {a : G} :
Equations
theorem AddSubgroup.mem_zmultiples_iff {G : Type u_1} [AddGroup G] {g : G} {h : G} :
h AddSubgroup.zmultiples g ∃ (k : ), k g = h
@[simp]
@[simp]
@[simp]
theorem AddSubgroup.forall_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : { x_1 : G // x_1 AddSubgroup.zmultiples x }Prop} :
(∀ (g : { x_1 : G // x_1 AddSubgroup.zmultiples x }), p g) ∀ (m : ), p m x,
theorem AddSubgroup.forall_mem_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : GProp} :
(∀ gAddSubgroup.zmultiples x, p g) ∀ (m : ), p (m x)
@[simp]
theorem AddSubgroup.exists_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : { x_1 : G // x_1 AddSubgroup.zmultiples x }Prop} :
(∃ (g : { x_1 : G // x_1 AddSubgroup.zmultiples x }), p g) ∃ (m : ), p m x,
theorem AddSubgroup.exists_mem_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : GProp} :
(∃ gAddSubgroup.zmultiples x, p g) ∃ (m : ), p (m x)
Equations
  • =
@[simp]
theorem AddSubgroup.intCast_mul_mem_zmultiples {R : Type u_4} [Ring R] (r : R) (k : ) :
@[deprecated AddSubgroup.intCast_mul_mem_zmultiples]
theorem AddSubgroup.int_cast_mul_mem_zmultiples {R : Type u_4} [Ring R] (r : R) (k : ) :

Alias of AddSubgroup.intCast_mul_mem_zmultiples.

@[deprecated AddSubgroup.intCast_mem_zmultiples_one]

Alias of AddSubgroup.intCast_mem_zmultiples_one.

@[simp]
@[simp]
theorem MonoidHom.map_zpowers {G : Type u_1} [Group G] {N : Type u_3} [Group N] (f : G →* N) (x : G) :
theorem ofMul_image_zpowers_eq_zmultiples_ofMul {G : Type u_1} [Group G] {x : G} :
Additive.ofMul '' (Subgroup.zpowers x) = (AddSubgroup.zmultiples (Additive.ofMul x))
theorem ofAdd_image_zmultiples_eq_zpowers_ofAdd {A : Type u_2} [AddGroup A] {x : A} :
Multiplicative.ofAdd '' (AddSubgroup.zmultiples x) = (Subgroup.zpowers (Multiplicative.ofAdd x))
instance AddSubgroup.zmultiples_isCommutative {G : Type u_1} [AddGroup G] (g : G) :
(AddSubgroup.zmultiples g).IsCommutative
Equations
  • =
instance Subgroup.zpowers_isCommutative {G : Type u_1} [Group G] (g : G) :
(Subgroup.zpowers g).IsCommutative
Equations
  • =
@[simp]
theorem AddSubgroup.zmultiples_le {G : Type u_1} [AddGroup G] {g : G} {H : AddSubgroup G} :
@[simp]
theorem Subgroup.zpowers_le {G : Type u_1} [Group G] {g : G} {H : Subgroup G} :
theorem Subgroup.zpowers_le_of_mem {G : Type u_1} [Group G] {g : G} {H : Subgroup G} :

Alias of the reverse direction of Subgroup.zpowers_le.

theorem AddSubgroup.zmultiples_le_of_mem {G : Type u_1} [AddGroup G] {g : G} {H : AddSubgroup G} :

Alias of the reverse direction of AddSubgroup.zmultiples_le.

@[simp]
@[simp]
theorem Subgroup.zpowers_eq_bot {G : Type u_1} [Group G] {g : G} :
theorem Subgroup.zpowers_ne_bot {G : Type u_1} [Group G] {g : G} :
theorem Subgroup.center_eq_infi' {G : Type u_1} [Group G] (S : Set G) (hS : Subgroup.closure S = ) :